CETIFICATION

SDG No:

JC27467

Laboratory:

Accutest, New Jersey

Site:

BMS, Building 5 Area, PR

Matrix:

Groundwater

Humacao, PR

SUMMARY:

Groundwater samples (Table 1) were collected on the BMSMC facility – Building 5 Area. The BMSMC facility is located in Humacao, PR. Samples were taken September 08-12, 2016 and were analyzed in Accutest Laboratory of Dayton, New Jersey for the ABN TCL Special List (1,4-Dioxane and Naphthalene were analyzed following the SIM technique); TCL pesticides list; and for low molecular weight alcohols (LMWA) the results were reported under SDG No.: JC27467. Results were validated using the latest validation guidelines (July, 2015) of the EPA Hazardous Waste Support Section. The analyses performed are shown in Table 1. Individual data review worksheets are enclosed for each target analyte group. The data sample organic data samples summary form shows for analytes results that were qualified.

In summary the results are valid and can be used for decision taking purposes.

Table 1. Samples analyzed and analysis performed

SAMPLE ID	SAMPLE DESCRIPTION	MATRIX	ANALYSIS PERFORMED
JC27467-1	S-41S	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC27467-2	S-41D	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC27467-3	S-32	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC27467-4	S-35D	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC27467-5	S-35	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA
JC27467-6	S-38	Groundwater	ABN TCL special list; 1,-4-dioxane and Naphthalene (SIM); Pesticides TCL list; LMWA

Reviewer Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

October 8, 2016

Report of Analysis

By

IJ

Page 1 of 3

Client Sample ID: S-41S

Lab Sample ID: JC27467-1

Matrix: Method: AQ - Ground Water

DF

1

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Analyzed

09/15/16

Date Sampled: 09/08/16 Date Received: 09/13/16

Percent Solids: n/a

OP97011

Prep Date

09/14/16

Prep Batch **Analytical Batch** E6P1387

Run #1 Run #2

Project:

Initial Volume Final Volume

900 ml

File ID

6P29835.D

1.0 ml

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	ND	5.6	2.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l	
	3&4-Methylphenol	ND	2.2	0.98	ug/l	
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/t	
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l	
87-86-5	Pentachlorophenol	ND	4.4	1.5	ug/l	
108-95-2	Phenol	ND	2.2	0.44	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l	
98-86-2	Acetophenone	ND	2.2	0.23	ug/l	
120-12-7	Anthracene	ND	1.1	0.23	ug/l	
1912-24-9	Atrazine	ND	2.2	0.50	ug/l	
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l	
50-32-8	Benzo(a) pyrene	ND	1.1	0.24	ug/l	
205-99-2	Benzo(b)fluoranthene	ND	1.1	0.23	ug/l	
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l	
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l	
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l	
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l	
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l	
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l	
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l	
86-74-8	Carbazole	ND	1.1	0.25	ug/l	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: S-41S

Lab Sample ID: JC27467-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Report of Analysis

Date Sampled: 09/08/16

Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

ADN ICL	Shermi Fist					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.2	0.72	ug/l	
218-01-9	Chrysene	ND	1.1	0.20	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/i	
111-44-4	bis(2-Chloroethyl)ether	ND	2.2	0.28	ug/i	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.2	0.45	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.2	0.41	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.1	0.61	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.1	0.53	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.2	0.56	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.1	0.37	ug/l	
132-64-9	Dibenzofuran	ND	5.6	0.24	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.2	0.55	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.2	0.26	ug/l	
84-66-2	Diethyl phthalate	ND	2.2	0.29	ug/I	
131-11-3	Dimethyl phthalate	ND	2.2	0.24	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.2	1.8	ug/l	
206-44-0	Fluoranthene	ND	1.1	0.19	ug/l	
86-73-7	Fluorene	ND	1.1	0.19	ug/l	
118-74-1	Hexachlorobenzene	ND	1.1	0.36	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.1	0.55	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	11	3.1	ug/l	
67-72-1	Hexachloroethane	ND	2.2	0.43	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.1	0.37	ug/l	
78-59-1	Isophorone	ND	2.2	0.31	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.1	0.29	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.1	0.23	ug/i	
88-74-4	2-Nitroaniline	ND	5.6	0.31	ug/l	
99-09-2	3-Nitroaniline	ND	5.6	0.43	ug/l	
100-01-6	4-Nitroaniline	ND	5.6	0.49	ug/l	
98-95-3	Nitrobenzene	ND	2.2	0.71	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.2	0.53	ug/l	- 1
86-30-6	N-Nitrosodiphenylamine	ND	5.6	0.25	ug/l	13
85-01-8	Phenanthrene	ND	1.1	0.19	ug/l	123
129-00-0	Pyrene	ND	1.1	0.24	ug/l	7.55
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l	103
	, , -,				p	(0)
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	100
367-12-4	2-Fluorophenol	51%		14-8	8%	
4165-62-2	Phenol-d5	37%			10%	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: S-41S

Lab Sample ID: JC27467-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Received: 09/13/16

Date Sampled: 09/08/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	100%		39-149%
4165-60-0	Nitrobenzene-d5	82%		32-128%
321-60-8	2-Fluorobiphenyl	86%		35-119%
1718-51-0	Terphenyl-d14	92%		10-126%

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: S-41S

Lab Sample ID:

JC27467-1

Matrix:

Method:

Project:

AO - Ground Water

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: Date Received: 09/13/16

09/08/16

Percent Solids: n/a

Ву File ID DF Analyzed Prep Date Prep Batch Analytical Batch 3M64239.D Run #1 1 09/15/16 SG 09/14/16 OP97011A E3M3053

Run #2

Initial Volume Final Volume Run #1 900 ml 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q 91-20-3 Naphthalene ND 0.11 0.033ug/l 123-91-1 1,4-Dioxane 0.921 0.11 0.054ug/[CAS No. Surrogate Recoveries Run# 2 Run#1 Limits 4165-60-0 Nitrobenzene-d5 67% 24-125% 321-60-8 2-Fluorobiphenyl 75% 19-127% 1718-51-0 Terphenyl-d14 74% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

DFT

DFT

Prep Date

n/a

n/a

Analyzed

09/23/16

09/21/16

Page 1 of 1

Client Sample ID: S-41S

Lab Sample ID: Matrix:

JC27467-1

GH106619.D

GH106556.D

AQ - Ground Water

Date Sampled: 09/08/16

Method:

SW846-8015C (DAI)

DF

1

1

n/a

n/a

Date Received: 09/13/16

Project:

Run #1 a

Run #2 b

BMSMC, Building 5 Area, PR

Percent Solids: n/a

Prep Batch **Analytical Batch** GGH5500 **GGH5498**

Low Molecular Alcohol List

File ID

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	
111-27-3	Hexanol	103%	151% ^c	56-1	45%	

(a) Sample originally analyzed within the holding time.

(b) Confirmation run.

(c) Outside of in house control limits. No associated positive result detected.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Ву

DS

Page 1 of 1

Client Sample ID: S-41S

Lab Sample ID:

JC27467-1

Matrix:

Method:

Project:

AQ - Ground Water

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

DF

1

Date Sampled: 09/08/16 Date Received: 09/13/16

Prep Date

09/14/16

Prep Batch

OP97015

Q

Percent Solids: n/a

Analytical Batch G4G1899

Run #1 Run #2

Initial Volume

4G72577.D

Final Volume

Analyzed

09/16/16

980 ml

File ID

10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/I
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	82%		26-13	32%
877-09-8	Tetrachloro-m-xylene	79%		26-13	32%
2051-24-3	Decachlorobiphenyl	63%		10-1	18%
2051-24-3	Decachlorobiphenyl	71%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

IJ

Prep Date

09/14/16

Page 1 of 3

Client Sample ID: S-41D

Lab Sample ID:

JC27467-2

AQ - Ground Water

Date Sampled: 09/08/16 Date Received: 09/13/16

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Q

Project:

BMSMC, Building 5 Area, PR

Analyzed

09/15/16

Prep Batch **Analytical Batch** OP97011 E6P1387

Run #1 Run #2

> Initial Volume 990 ml

6P29836.D

File ID

Final Volume 1.0 ml

DF

1

Run #1 Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.1	0.83	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5,.1	0.90	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.90	ug/I
	3&4-Methylphenol	ND	2.0	0.89	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.97	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.93	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/t
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Вепго(а)ругепе	ND	1.0	0.22	ug/I
205-99-2	Benzo(b) fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.1	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

tacl Infante Méndez **1888**

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Matrix:

Method:

Project:

Client Sample ID: S-41D Lab Sample ID:

JC27467-2

AQ - Ground Water SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/08/16 Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

	•					
CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/i	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-π-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/i	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.65	ug/l	
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.22	ug/l	BRE ASO
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	10
129-00-0	Pyrene	ND	1.0	0.22	ug/l	
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	景 W M
	-y-y-y-	3 107		0.01	b' *	OF N
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	· Upp
367-12-4	2-Fluorophenol	42%		14-8	8%	*/CO
4165-62-2	Phenol-d5	28%			10%	
		2070		10-1	1070	

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-41D Lab Sample ID:

JC27467-2

Date Sampled:

09/08/16

Matrix: Method: AQ - Ground Water SW846 8270D SW846 3510C Date Received: 09/13/16

Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6	2,4,6-Tribromophenol	93%		39-149%
4165-60-0	Nitrobenzene-d5	73%		32-128%
321-60-8	2-Fluorobiphenyl	76%		35-119%
1718-51-0	Terphenyl-d14	81%		10-126%

E = Indicates value exceeds calibration range

Report of Analysis

Page 1 of 1

Client Sample ID: S-41D

Lab Sample ID: JC27467-2

File ID

3M64244.D

Compound

Matrix: Method:

AQ - Ground Water

DF

1

SW846 8270D BY SIM SW846 3510C

By

SG

Date Sampled: 09/08/16 Date Received: 09/13/16

Project:

BMSMC, Building 5 Area, PR

Analyzed

09/15/16

Percent Solids: n/a

Run #1

Prep Date 09/14/16

Prep Batch OP97011A

Analytical Batch E3M3053

Run #2

Initial Volume Final Volume Run #1 990 ml 1.0 ml

Run #2

CAS No.

Result RL MDL Units Q

91-20-3 Naphthalene ND 0.030 0.10 ug/l 123-91-1 1,4-Dioxane 1.71 0.10 0.049 ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 61% 24-125% 321-60-8 2-Fluorobiphenyl 67% 19-127% 1718-51-0 Terphenyl-d14 69% 10-119%

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

Page 1 of 1

SGS Accutest

Report of Analysis

Ву

DFT

DFT

Analyzed

09/23/16

09/21/16

Client Sample ID: S-41D Lab Sample ID: JC27467-2

Matrix: Method: AQ - Ground Water

Project:

Run #1 a

Run #2 b

SW846-8015C (DAI)

DF

I

1

BMSMC, Building 5 Area, PR

Date Sampled: 09/08/16 Date Received: 09/13/16

Percent Solids: n/a

<u>:</u> :		
Prep Date	Prep Batch	Analytical Batch
n/a	n/a	GGH5500
n/a	n/a	GGH5498

Low Molecular Alcohol List

File ID

GH106620.D

GH106557.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/i	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	98%	163% ^c	56-1	45%	

- (a) Sample originally analyzed within the holding time.
- (b) Confirmation run.
- (c) Outside of in house control limits. No associated positive result detected.

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: S-41D

Lab Sample ID:

JC27467-2

Matrix:

AQ - Ground Water

DF

SW846 8081B SW846 3510C

Date Sampled: 09/08/16 Date Received: 09/13/16

Percent Solids: n/a

Method: Project:

BMSMC, Building 5 Area, PR

Run #1 4G72578.D 1 Run #2

Analyzed Ву 09/16/16 DS Prep Date 09/14/16

Prep Batch OP97015

Q

Analytical Batch G4G1899

Run #1

Initial Volume

990 ml

File ID

Final Volume 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0061	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/I
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	101%		26-13	32%
877-09-8	Tetrachloro-m-xylene	91%		26-13	32%
2051-24-3	Decachlorobiphenyl	60%		10-13	18%
2051-24-3	Decachlorobiphenyl	64%		10-13	l 8 %

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

JC27467

Report of Analysis

By

IJ

09/14/16

Page 1 of 3

Client Sample ID: S-32

File ID

6P29837.D

Lab Sample ID:

JC27467-3

AQ - Ground Water

09/09/16 Date Sampled: Date Received: 09/13/16

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

OP97011

Project:

BMSMC, Building 5 Area, PR

Analyzed

09/15/16

Prep Date Prep Batch **Analytical Batch**

E6P1387

Run #1

Run #2

Initial Volume Final Volume

DF

1

Run #1

900 ml 1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
95-57-8	2-Chlorophenol	ND	5.6	0.91	ug/l	
59-50-7	4-Chloro-3-methyl phenol	ND	5.6	0.99	ug/l	
120-83-2	2,4-Dichlorophenol	ND	2.2	1.4	ug/l	
105-67-9	2,4-Dimethylphenol	54.8	5.6	2.7	ug/l	
51-28-5	2,4-Dinitrophenol	ND	11	1.7	ug/l	
534-52-1	4,6-Dinitro-o-cresol	ND	5.6	1.4	ug/l	
95-48-7	2-Methylphenol	ND	2.2	0.99	ug/l	
	3&4-Methylphenol	1.5	2.2	0.98	ug/l	J
88-75-5	2-Nitrophenol	ND	5.6	1.1	ug/l	•
100-02-7	4-Nitrophenol	ND	11	1.3	ug/l	
87-86-5	Pentachlorophenol	ND	4.4	1.5	ug/i	
108-95-2	Phenoi	ND	2.2	0.44	ug/l	
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.6	1.6	ug/l	
95-95-4	2,4,5-Trichlorophenol	ND	5.6	1.5	ug/l	
88-06-2	2,4,6-Trichlorophenol	ND	5.6	1.0	ug/l	
83-32-9	Acenaphthene	ND	1.1	0.21	ug/l	
208-96-8	Acenaphthylene	ND	1.1	0.15	ug/l	
98-86-2	Acetophenone	26.7	2.2	0.23	ug/l	
120-12-7	Anthracene	0.53	1.1	0.23	ug/l	J
1912-24-9	Atrazine	ND	2.2	0.50	ug/l	3
100-52-7	Benzaldehyde	ND	5.6	0.32	ug/l	
56-55-3	Benzo(a)anthracene	ND	1.1	0.23	ug/l	
50-32-8	Benzo(a) pyrene	ND	1.1	0.24	ug/l	
205-99-2	Benzo(b) fluoranthene	ND	1.1	0.23	ug/l	All the second
191-24-2	Benzo(g,h,i)perylene	ND	1.1	0.38	ug/l	BRE ASOCIADO DE P
207-08-9	Benzo(k)fluoranthene	ND	1.1	0.23	ug/l	Akr.
101-55-3	4-Bromophenyl phenyl ether	ND	2.2	0.45	ug/l	/ 3
85-68-7	Butyl benzyl phthalate	ND	2.2	0.51	ug/l	luci Infante
92-52-4	1,1'-Biphenyl	ND	1.1	0.24	ug/l	Mende/
91-58-7	2-Chloronaphthalene	ND	2.2	0.26	ug/l	/ * / 16 = 1888 /
106-47-8	4-Chloroaniline	ND	5.6	0.38	ug/l	134
86-74-8	Carbazole	ND	1.1	0.25	ug/l	MICO FILENCINE
					-6 -	in the

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

	Client S	ample ID:	S-32
ļ	Lah San	nple ID:	IC2746

JC27467-3

Matrix: Method: Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/09/16 Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

Compound	Result	RL	MDL	Units	Q
Caprolactam	ND	2.2	0.72	ug/l	
Chrysene	ND	1.1	0.20	ug/l	
bis(2-Chloroethoxy)methane	ND	2.2	0.31	ug/I	
bis(2-Chloroethyl)ether	ND	2.2	0.28	-	
bis(2-Chloroisopropyl)ether	ND	2.2	0.45	-	
4-Chlorophenyl phenyl ether	ND	2.2	0.41		
2,4-Dinitrotoluene	ND	1.1	0.61		
2,6-Dinitrotoluene	ND	1.1	0.53		
3,3'-Dichlorobenzidine	ND	2.2	0.56		
Dibenzo(a,h)anthracene	ND	1.1	0.37	-	
Dibenzofuran	ND	5.6	0.24	_	
Di-n-butyl phthalate	ND	2.2	0.55		
Di-n-octyl phthalate	ND	2.2	0.26		
Diethyl phthalate	ND	2.2	0.29		
Dimethyl phthalate	ND	2.2	0.24		
bis(2-Ethylhexyl)phthalate	2.2	2.2	1.8		
Fluoranthene	ND	1.1	0.19		
Fluorene	ND	1.1	0.19	_	
Hexachlorobenzene	ND	1.1		-	
Hexachlorobutadiene	ND	1.1			
Hexachlorocyclopentadiene	ND	11			
Hexachloroethane	ND	2.2	0.43		
Indeno(1,2,3-cd)pyrene	ND	1.1	0.37		
Isophorone	ND	2.2	0.31		
1-Methylnaphthalene	ND	1.1	0.29		
2-Methylnaphthalene	ND	1.1		_	
2-Nitroaniline	ND	5.6		Name .	
3-Nitroaniline	ND	5.6			
4-Nitroaniline	ND	5.6	0.49		
Nitrobenzene	ND	2.2	0.71		
N-Nitroso-di-n-propylamine	ND	2.2	0.53		
N-Nitrosodiphenylamine	ND			_	
Phenanthrene	ND	1.1			- 1
Pyrene	ND	1.1		_	- (
1,2,4,5-Tetrachlorobenzene	ND	2.2	0.41	ug/l	
Surrogate Recoveries	Run#1	Run# 2	Limi	its	
2-Fluorophenol	18%		14-8	8%	
	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether 4-Chlorophenyl phenyl ether 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Diethyl phthalate Dimethyl phthalate bis(2-Ethylhexyl)phthalate Fluoranthene Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocethane Indeno(1,2,3-cd)pyrene Isophorone 1-Methylnaphthalene 2-Methylnaphthalene 2-Nitroaniline 3-Nitroaniline Nitrobenzene N-Nitroso-di-n-propylamine N-Nitroso-di-n-propylamine Phenanthrene Pyrene 1,2,4,5-Tetrachlorobenzene Surrogate Recoveries	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether 4-Chlorophenyl phenyl ether 2,4-Dinitrotoluene 2,6-Dinitrotoluene 3,3'-Dichlorobenzidine Dibenzo(a,h)anthracene Dibenzofuran Di-n-butyl phthalate Di-n-octyl phthalate Diethyl phthalate Dimethyl phthalate Dimethyl phthalate ND Fluorene Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Hexachlorocyclopentadiene Hexachlorocyclopentadiene ND Hexachlorocyclopentadiene ND Indeno(1,2,3-cd)pyrene Isophorone ND ND Notroaniline ND Notroaniline ND Notroaniline ND Notroso-di-n-propylamine ND Notroso-di-n-propylam	Caprolactam Chrysene bis(2-Chloroethoxy)methane bis(2-Chloroethyl)ether bis(2-Chloroethyl)ether bis(2-Chloroisopropyl)ether A-Chlorophenyl phenyl ether VD 2.2 4-Chlorophenyl phenyl ether VD 2.4-Dinitrotoluene VD 2.5-Dinitrotoluene VD 3,3'-Dichlorobenzidine VD	Caprolactam ND 2.2 0.72 Chrysene ND 1.1 0.20 bis(2-Chloroethoxy)methane ND 2.2 0.31 bis(2-Chloroethyl)ether ND 2.2 0.45 4-Chlorophenyl phenyl ether ND 2.2 0.41 2.4-Dinitrotoluene ND 1.1 0.61 2.6-Dinitrotoluene ND 1.1 0.53 3,3'-Dichlorobenzidine ND 2.2 0.56 Dibenzo(a,h)anthracene ND 1.1 0.37 Dibenzofuran ND 5.6 0.24 Di-n-butyl phthalate ND 2.2 0.25 Di-n-octyl phthalate ND 2.2 0.26 Dientyl phthalate ND 2.2 0.24 Di-n-octyl phthalate ND 2.2 0.24 Dientyl phthalate ND 2.2 0.24 Dientyl phthalate ND 2.2 0.24 Discopentyl phthalate ND 1.1 0.19 Fluo	Caprolactam

isself of the \lende/

ND = Not detected

4165-62-2

MDL = Method Detection Limit

28%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Phenol-d5

J = Indicates an estimated value

10-110%

B = Indicates analyte found in associated method blank

Page 3 of 3

Client Sample ID: S-32

Lab Sample ID: JC27467-3

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Per

Date Sampled: 09/09/16 Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits
118-79-6 4165-60-0	2.4,6-Tribromophenol Nitrobenzene-d5	100% 79%		39-149% 32-128%
321-60-8	2-Fluorobiphenyl	87%		35-119%
1718-51-0	Terphenyl-d14	77%		10-126%

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Report of Analysis

By

SG

Page 1 of 1

Client Sample ID: S-32

Lab Sample ID:

JC27467-3

Matrix:

AQ - Ground Water

DF

1

File ID

SW846 8270D BY SIM SW846 3510C

Analyzed

09/15/16

Date Received: 09/13/16

Date Sampled: 09/09/16

Percent Solids: n/a

OP97011A

Units

ug/I

ug/l

Q

Prep Date

09/14/16

MDL

0.033

Prep Batch **Analytical Batch** E3M3053

Run #1 Run #2

91-20-3

123-91-1

CAS No.

Method:

Project:

Initial Volume

3M64240.D

Final Volume

BMSMC, Building 5 Area; PR

1.0 ml

Run #1 Run #2

CAS No. Compound

900 ml

Naphthalene 1,4-Dioxane

Surrogate Recoveries

4165-60-0 Nitrobenzene-d5

321-60-8 2-Fluorobiphenyl 1718-51-0 Terphenyl-d14

Result RL 0.11

0.3644.23

74%

68%

60%

0.11 0.054Run#1

Run# 2 Limits 24-125%

19-127% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-32

Lab Sample ID: JC27467-3

Matrix: Method: AQ - Ground Water

SW846-8015C (DAI)

Date Sampled: 09/09/16

Percent Solids: n/a

Date Received: 09/13/16

Project:

BMSMC, Building 5 Area, PR

	File ID	DF	Analyzed	Вy	Prep Date	Prep Batch	Analytical Batch
Run #1	GH106621.D	1	09/23/16	DFT	n/a	n/a	GGH5500
Run #2 a	GH106558.D	1	09/21/16	DFT	n/a	n/a	GGH5498

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	85%	170% b	56-1	45%	

- (a) Confirmation run.
- (b) Outside of in house control limits. No associated positive result detected.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-32

Lab Sample ID:

JC27467-3

Matrix:

Method:

Project:

AQ - Ground Water

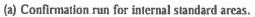
SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/09/16

Q

Date Received: 09/13/16


Percent Solids: n/a

	File ID	DF	Analyzed	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	4G72696.D	5	09/21/16	DS	09/14/16	OP97015	G4G1901
Run #2 a	4G72586.D	1	09/16/16	DS	09/14/16	OP97015	G4G1899

	Initial Volume	Final Volume
Run #1 Run #2	1000 ml	10.0 ml
Run #2	1000 ml	10.0 ml

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.050	0.030	ug/l
319-84-6	alpha-BHC	ND	0.050	0.030	ug/l
319-85-7	beta-BHC	ND	0.050	0.028	ug/l
319-86-8	delta-BHC	ND	0.050	0.023	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.050	0.014	ug/l
5103-71-9	alpha-Chlordane	ND	0.050	0.023	ug/l
5103-74-2	gamma-Chlordane	ND	0.050	0.023	ug/l
60-57-1	Dieldrin	ND	0.050	0.018	ug/l
72-54-8	4,4'-DDD	ND	0.050	0.019	ug/l
72-55-9	4,4'-DDE	ND	0.050	0.031	ug/l
50-29-3	4,4'-DDT	ND	0.050	0.025	ug/l
72-20-8	Endrin	ND	0.050	0.025	ug/l
1031-07-8	Endosulfan sulfate	ND	0.050	0.026	ug/l
7421-93-4	Endrin aldehyde	ND	0.050	0.026	ug/l
53494-70-5	Endrin ketone	ND	0.050	0.025	ug/l
959-98-8	Endosulfan-I	ND	0.050	0.025	ug/l
33213-65-9	Endosulfan-II	ND	0.050	0.021	ug/l
76-44-8	Heptachlor	ND	0.050	0.019	ug/l
1024-57-3	Heptachlor epoxide	ND	0.050	0.033	ug/l
72-43-5	Methoxychlor	ND	0.10	0.028	ug/l
8001-35-2	Toxaphene	ND	1.3	0.92	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	its
877-09-8	Tetrachloro-m-xylene	48%	19% ^b	26-1	32%

Tetrachloro-m-xylene

Decachlorobiphenyl

Decachlorobiphenyl

⁽b) Outside control limits due to matrix interference with the internal standard.

877-09-8

2051-24-3

2051-24-3

61%

27%

35%

30%

10%

19%

26-132%

10-118%

10-118%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 3

Client Sample ID: S-35D

Lab Sample ID: JC27467-4

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Date Sampled: 09/09/16 Date Received: 09/13/16

Q

Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 6P29864.D 1 09/15/16 AC 09/14/16 OP97011 E6P1389

Run #2

Initial Volume Final Volume Run #1 1000 ml 1.0 ml

Run #2

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.0	0.82	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.0	0.89	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.0	2.4	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.0	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.89	ug/l
	3&4-Methylphenol	ND	2.0	0.88	ug/l
88-75-5	2-Nitrophenol	ND	5.0	0.96	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.39	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.0	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.0	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.0	0.92	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.0	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.20	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.21	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k) fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.40	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.0	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

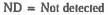
B = Indicates analyte found in associated method blank

Method:

Project:

Client Sample ID: S-35D Lab Sample ID: JC27467-4 Matrix:

AQ - Ground Water


SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/09/16 Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.65	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.40	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.55	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	26.0	1.0	0.66	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.0	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.23	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.49	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.33	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.26	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.0	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.0	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.0	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.64	ug/l	SOCIADO DE
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.48	ug/l	3/12
86-30-6	N-Nitrosodiphenylamine	ND	5.0	0.22	ug/l	full Infanta
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	Alimba 2
129-00-0	Pyrene	ND	1.0	0.22	ug/l	tael Infante Viéndez 11 1888
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	1000
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	WCO LICENCIADO
367-12-4	2-Fluorophenol	42%		14-8	8%	

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Page 3 of 3

Client Sample ID: S-35D

Lab Sample ID: JC27467-4

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/09/16 Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5	30%		10-110%
118-79-6	2,4,6-Tribromophenol	86%		39-149%
4165-60-0	Nitrobenzene-d5	81%		32-128%
321-60-8	2-Fluorobiphenyl	82%		35-119%
1718-51-0	Terphenyl-d14	85%		10-126%

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

C	licn	t	Samp	[e	ID:	S-S	35I)
I_								

Lab Sample ID: Matrix:

JC27467-4

AQ - Ground Water SW846 8270D BY SIM SW846 3510C

1.0 ml

Date Sampled: 09/09/16 Date Received: 09/13/16

Method: Project: BMSMC, Building 5 Area, PR Percent Solids: n/a

File ID DF Ву Analyzed Prep Date Prep Batch **Analytical Batch** Run #1 3M64241.D 1 09/15/16 SG 09/14/16 OP97011A E3M3053

Run #2

Initial Volume Final Volume Run #1 1000 ml

Run #2

CAS No. Compound Result RL MDL Units Q

91-20-3 Naphthalene ND 0.100.029 ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 65% 24-125% 321-60-8 2-Fluorobiphenyl 68% 19-127% 1718-51-0 Terphenyl-d14 68% 10-119%

ND = Not detected

MDL = Method Detection Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Report of Analysis

Page 1 of 1

Client Sample ID: S-35D

Lab Sample ID: JC27467-4

Matrix: Method:

Project:

AQ - Ground Water

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 09/09/16

Date Received: 09/13/16

Percent Solids: n/a

	File ID	DF	Analyzod	Ву	Prep Date	Prep Batch	Analytical Batch
Run #1	GH106622.D	1	09/23/16	DFT	n/a	n/a	GGH5500
Run #2 a	GH106559.D	1	09/22/16	DFT	n/a	n/a	GGH5498

Low Molecular Alcohol List

CAS No.	Compound	Rosult	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	105%	175% b	56-1	45%	

(a) Confirmation run.

(b) Outside of in house control limits. No associated positive result detected.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

By

DS

Page 1 of 1

Client Sample ID: S-35D

Lab Sample ID:

JC27467-4

AQ - Ground Water

DF

1

Date Sampled: 09/09/16 Date Received: 09/13/16

Matrix: Method:

SW846 8081B SW846 3510C

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch**

Run #1 Run #2

File ID

4G72579.D

09/14/16

Prep Date

OP97015 G4G1899

Initial Volume Final Volume 980 ml 10.0 ml

Run #1

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units	Q

Analyzed

09/16/16

309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0058	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0063	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0058	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CLACINT-	Conservate December	There 4. 4	D	T. Sec. 3	A

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
877-09-8	Tetrachloro-m-xylene	104%		26-132%
877-09-8	Tetrachloro-m-xylene	99%		26-132%
2051-24-3	Decachlorobinhenyl	88%		10-118%

ND = Not detected

2051-24-3

MDL = Method Detection Limit

100%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-118%

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 3

Client Sample ID: S-35

Lab Sample ID: JC27467-5

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C

Date Received:

Q

Date Sampled: 09/09/16 09/13/16

Percent Solids: n/a

Project:

BMSMC, Building 5 Area, PR

Prep Batch **Analytical Batch**

File ID Prep Date DF Analyzed Ву Run #1 6P29839.D 09/15/16 09/14/16 E6P1387 1 IJ OP97011 Run #2 6P29854.D 10 09/15/16 AC 09/14/16 OP97011 E6P1388

Initial Volume Final Volume Run #1 990 ml 1.0 ml

Run #2 990 ml 1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Unit
95-57-8	2-Chlorophenol	ND	5.1	0.83	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.90	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l
51-28-5	2,4-Dinitrophenoi	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.90	ug/l
	3&4-Methylphenol	ND	2.0	0.89	ug/l
88-75-5	2-Nitrophenol	ND	5.1	0.97	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.3	ug/l
88-06-2	2,4,6-Trichlorophenol	ND	5.1	0.93	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a) pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k)fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.1	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l
					0

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: S-35

Lab Sample ID: JC27467-5

Matrix: Method: AQ - Ground Water

SW846 8270D SW846 3510C Project: BMSMC, Building 5 Area, PR

Date Sampled: 09/09/16

Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bls(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bls(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	372 a	10	6.6	ug/l	
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.44	ug/l	
98-95-3	Nitrobenzene	ND	2.0	0.65	ug/l	COCHOO
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	SHE ASOCIADO DE
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.22	ug/l	Mr.
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	/ tael Infante
129-00-0	Pyrene	ND	1.0	0.22	ug/l	Mendez
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	4-1
	· , , ,				-0.	15,
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	CO LICENCY
367-12-4	2-Fluorophenol	44%	29%	14-8	8%	LICEN

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: S-35

Lab Sample ID: JC27467-5

Matrix: Method:

Project:

AO - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR

Date Sampled: 09/09/16 Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5	31%	26%	10-110%
118-79-6	2,4,6-Tribromophenol	94%	73%	39-149%
4165-60-0	Nitrobenzene-d5	77%	65%	32-128%
321-60-8	2-Fluorobiphenyl	80%	76%	35-119%
1718-51-0	Terphenyl-d14	71%	62%	10-126%

(a) Result is from Run# 2

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-35

Lab Sample ID: JC27467-5

Matrix:

AO - Ground Water

SW846 8270D BY SIM SW846 3510C

Date Sampled:

09/09/16 Date Received: 09/13/16

Percent Solids: n/a

Method: Project:

BMSMC, Building 5 Area, PR

File ID DF Analyzed **Analytical Batch** By Prep Date Prep Batch 3M64242.D Run #1 1 09/15/16 SG 09/14/16 OP97011A E3M3053

Run #2

Final Volume **Initial Volume** 990 ml Run #1 1.0 ml

Run #2

CAS No. Compound Result RL MDL Units Q

91-20-3 Naphthalene ND 0.10 0.030ug/l

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 67% 24-125% 321-60-8 2-Fluorobiphenyl 71% 19-127% 1718-51-0 Terphenyl-d14 65% 10-119%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Ву

DFT

DFT

n/a

n/a

Page 1 of 1

Client Sample ID: S-35

Lab Sample ID: JC27467-5

Matrix: Method:

Project:

Run #1

Run #2 a

AQ - Ground Water

DF

1

1

SW846-8015C (DAI)

BMSMC, Building 5 Area, PR

Date Sampled: 09/09/16 Date Received: 09/13/16

Percent Solids: n/a

n/a

Prep Date	Prep Batch	Analytical Batch
n/a	n/a	CCH5500

GGH5498

Low Molecular Alcohol List

File ID

GH106623.D

GH106560.D

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
111-27-3	Hexanol	101%	177% b	56-1	45%	

Analyzed

09/23/16

09/22/16

(a) Confirmation run.

(b) Outside of in house control limits. No associated positive result detected.

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-35

Lab Sample ID: JC27467-5

Matrix: Method: AQ - Ground Water

SW846 8081B SW846 3510C

Date Received: 09/13/16

Q

Date Sampled: 09/09/16

Project: BMSMC, Building 5 Area, PR

Percent Solids: n/a

File ID DF Analyzed By Prep Date Prep Batch **Analytical Batch** Run #1 4G72589.D 1 09/16/16 DS 09/14/16 OP97015 G4G1899

Run #2

Initial Volume

970 ml

Final Volume 10.0 ml

Run #1 Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0062	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0062	ug/l
319-85-7	beta-BHC	ND	0.010	0.0059	ug/l
319-86-8	delta-BHC	ND	0.010	0.0047	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0029	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0048	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0047	ug/l
60-57-1	Dieldrin	ND	0.010	0.0037	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0039	ug/l
72-55-9	4,4'-DDE	ND	0.010	0.0064	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0051	ug/l
72-20-8	Endrin	ND	0.010	0.0052	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0054	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0053	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0052	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0051	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0044	ug/l
76-44-8	Heptachlor	ND	0.010	0.0039	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0067	ug/l
72-43-5	Methoxychlor	ND	0.021	0.0059	ug/l
8001-35-2	Toxaphene	ND	0.26	0.19	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	85%		26-13	32%
877-09-8	Tetrachloro-m-xylene	82%		26-13	32%
2051-24-3	Decachlorobiphenyl	76%		10-11	18%
2051-24-3	Decachlorobiphenyl	83%		10-1	18%

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

IJ

AC

Prep Date

09/14/16

09/14/16

Page 1 of 3

Client Sample ID: S-38

File ID

6P29840.D

6P29853.D

Lab Sample ID:

JC27467-6 AQ - Ground Water

Date Sampled: 09/12/16 Date Received: 09/13/16

Matrix: Method:

SW846 8270D SW846 3510C

Percent Solids: n/a

Project:

Run #1

Run #2

BMSMC, Building 5 Area, PR

Analyzed

09/15/16

09/15/16

Prep Batch

OP97011

OP97011

Q

Analytical Batch E6P1387 E6P1388

Initial Volume Final Volume

Run #1 990 ml Run #2 990 ml

1.0 ml

DF

1

50

1.0 ml

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units
95-57-8	2-Chlorophenol	ND	5.1	0.83	ug/l
59-50-7	4-Chloro-3-methyl phenol	ND	5.1	0.90	ug/l
120-83-2	2,4-Dichlorophenol	ND	2.0	1.3	ug/l
105-67-9	2,4-Dimethylphenol	ND	5.1	2.5	ug/l
51-28-5	2,4-Dinitrophenol	ND	10	1.6	ug/l
534-52-1	4,6-Dinitro-o-cresol	ND	5.1	1.3	ug/l
95-48-7	2-Methylphenol	ND	2.0	0.90	ug/l
	3&4-Methylphenoi	ND	2.0	0.89	ug/[
88-75-5	2-Nitrophenol	ND	5.1	0.97	ug/l
100-02-7	4-Nitrophenol	ND	10	1.2	ug/l
87-86-5	Pentachlorophenol	ND	4.0	1.4	ug/l
108-95-2	Phenol	ND	2.0	0.40	ug/l
58-90-2	2,3,4,6-Tetrachlorophenol	ND	5.1	1.5	ug/l
95-95-4	2,4,5-Trichlorophenol	ND	5.1	1.3	ug/l
88-06-2	2,4,6-Trichlorophenoi	ND	5.1	0.93	ug/l
83-32-9	Acenaphthene	ND	1.0	0.19	ug/l
208-96-8	Acenaphthylene	ND	1.0	0.14	ug/l
98-86-2	Acetophenone	ND	2.0	0.21	ug/l
120-12-7	Anthracene	ND	1.0	0.21	ug/l
1912-24-9	Atrazine	ND	2.0	0.45	ug/l
100-52-7	Benzaldehyde	ND	5.1	0.29	ug/l
56-55-3	Benzo(a)anthracene	ND	1.0	0.21	ug/l
50-32-8	Benzo(a)pyrene	ND	1.0	0.22	ug/l
205-99-2	Benzo(b)fluoranthene	ND	1.0	0.21	ug/l
191-24-2	Benzo(g,h,i)perylene	ND	1.0	0.34	ug/l
207-08-9	Benzo(k) fluoranthene	ND	1.0	0.21	ug/l
101-55-3	4-Bromophenyl phenyl ether	ND	2.0	0.41	ug/l
85-68-7	Butyl benzyl phthalate	ND	2.0	0.46	ug/l
92-52-4	1,1'-Biphenyl	ND	1.0	0.21	ug/l
91-58-7	2-Chloronaphthalene	ND	2.0	0.24	ug/l
106-47-8	4-Chloroaniline	ND	5.1	0.34	ug/l
86-74-8	Carbazole	ND	1.0	0.23	ug/l

ND = Not detected

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 2 of 3

Client Sample ID: S-38

Lab Sample ID: JC27467-6

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C BMSMC, Building 5 Area, PR Date Sampled: 09/12/16 Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Compound	Result	RL	MDL	Units	0
CM3 140.	Compound	Kosuit	KL	MDL	Omis	Q
105-60-2	Caprolactam	ND	2.0	0.66	ug/l	
218-01-9	Chrysene	ND	1.0	0.18	ug/l	
111-91-1	bis(2-Chloroethoxy)methane	ND	2.0	0.28	ug/l	
111-44-4	bis(2-Chloroethyl)ether	ND	2.0	0.25	ug/l	
108-60-1	bis(2-Chloroisopropyl)ether	ND	2.0	0.41	ug/l	
7005-72-3	4-Chlorophenyl phenyl ether	ND	2.0	0.37	ug/l	
121-14-2	2,4-Dinitrotoluene	ND	1.0	0.56	ug/l	
606-20-2	2,6-Dinitrotoluene	ND	1.0	0.48	ug/l	
91-94-1	3,3'-Dichlorobenzidine	ND	2.0	0.51	ug/l	
123-91-1	1,4-Dioxane	2470 a	51	33	ug/l	16
53-70-3	Dibenzo(a,h)anthracene	ND	1.0	0.33	ug/l	
132-64-9	Dibenzofuran	ND	5.1	0.22	ug/l	
84-74-2	Di-n-butyl phthalate	ND	2.0	0.50	ug/l	
117-84-0	Di-n-octyl phthalate	ND	2.0	0.24	ug/l	
84-66-2	Diethyl phthalate	ND	2.0	0.26	ug/l	
131-11-3	Dimethyl phthalate	ND	2.0	0.22	ug/l	
117-81-7	bis(2-Ethylhexyl)phthalate	ND	2.0	1.7	ug/l	
206-44-0	Fluoranthene	ND	1.0	0.17	ug/l	
86-73-7	Fluorene	ND	1.0	0.17	ug/l	
118-74-1	Hexachlorobenzene	ND	1.0	0.33	ug/l	
87-68-3	Hexachlorobutadiene	ND	1.0	0.50	ug/l	
77-47-4	Hexachlorocyclopentadiene	ND	10	2.8	ug/l	
67-72-1	Hexachloroethane	ND	2.0	0.39	ug/l	
193-39-5	Indeno(1,2,3-cd)pyrene	ND	1.0	0.34	ug/l	
78-59-1	Isophorone	ND	2.0	0.28	ug/l	
90-12-0	1-Methylnaphthalene	ND	1.0	0.27	ug/l	
91-57-6	2-Methylnaphthalene	ND	1.0	0.21	ug/l	
88-74-4	2-Nitroaniline	ND	5.1	0.28	ug/l	
99-09-2	3-Nitroaniline	ND	5.1	0.39	ug/l	
100-01-6	4-Nitroaniline	ND	5.1	0.44	ug/l	-00110-
98-95-3	Nitrobenzene	ND	2.0	0.65	ug/l	SE ASUCIADO DE
621-64-7	N-Nitroso-di-n-propylamine	ND	2.0	0.49	ug/l	British
86-30-6	N-Nitrosodiphenylamine	ND	5.1	0.22	ug/l	trul Inform
85-01-8	Phenanthrene	ND	1.0	0.18	ug/l	\Linda
129-00-0	Pyrene	ND	1.0	0.22	ug/l	11 - 1990
95-94-3	1,2,4,5-Tetrachlorobenzene	ND	2.0	0.37	ug/l	tacl Infante Viende 1 = 1888
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Lim	its	INCO LICENCIADO
367-12-4	2-Fluorophenol	47%	17%	14-8	8%	

Report of Analysis

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Client Sample ID: S-38

Lab Sample ID: JC27467-6

Matrix: Method:

Project:

AQ - Ground Water

SW846 8270D SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/12/16 Date Received: 09/13/16

Percent Solids: n/a

ABN TCL Special List

CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limits
4165-62-2	Phenol-d5	35%	14%	10-110%
118-79-6	2,4,6-Tribromophenol	100%	75%	39-149%
4165-60-0	Nitrobenzene-d5	87%	53%	32-128%
321-60-8	2-Fluorobiphenyl	90%	93%	35-119%
1718-51-0	Terphenyl-d14	79%	93%	10-126%

(a) Result is from Run# 2

MDL = Method Detection Limit

B = Indicates analyte found in associated method blank

Report of Analysis

Page 1 of 1

Client Sample ID: S-38

Lab Sample ID:

JC27467-6

Matrix:

Method:

Project:

AO - Ground Water

1

Date Sampled: 09/12/16

Date Received: 09/13/16

SW846 8270D BY SIM SW846 3510C BMSMC, Building 5 Area, PR

Percent Solids: n/a

File ID DF Analyzed By Prep Date

09/15/16

Run #1 3M64243.D Run #2

SG 09/14/16 Prep Batch OP97011A

Analytical Batch E3M3053

Initial Volume Final Volume 990 ml Run #1 1.0 ml

Run #2

CAS No.

91-20-3

Compound

Naphthalene

Result

RL

MDL

Units

0

ND 0.100.030ug/I

CAS No. Surrogate Recoveries Run#1 Run# 2 Limits

4165-60-0 Nitrobenzene-d5 70% 24-125% 321-60-8 2-Fluorobiphenyl 73% 19-127% 1718-51-0 Terphenyl-d14 66% 10-119%

RL = Reporting Limit

E = Indicates value exceeds calibration range

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Method:

Report of Analysis

Page 1 of I

Client Sample ID: S-38

Lab Sample ID: Matrix:

JC27467-6

AQ - Ground Water SW846-8015C (DAI) Date Sampled: 09/12/16

Date Received: 09/13/16

Percent Solids: n/a

Project: BMSMC, Building 5 Area, PR

Run #1 Run #2 ª	File ID GH106624.D GH106561.D	DF 1 1	Analyzed 09/23/16 09/22/16	By DFT DFT	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch GGH5500 GGH5498
--------------------	-------------------------------------	--------------	----------------------------------	------------------	-------------------------	--------------------------	--

Low Molecular Alcohol List

CAS No.	Compound	Result	RL	MDL	Units	Q
64-17-5	Ethanol	ND	200	55	ug/l	
78-83-1	Isobutyl Alcohol	ND	100	36	ug/l	
67-63-0	Isopropyl Alcohol	ND	100	68	ug/l	
71-23-8	n-Propyl Alcohol	ND	100	43	ug/l	
71-36-3	n-Butyl Alcohol	ND	100	87	ug/l	
78-92-2	sec-Butyl Alcohol	ND	100	66	ug/l	
67-56-1	Methanol	ND	200	71	ug/l	
CAS No.	Surrogate Recoveries	Run# I	Run# 2	Limits		
111-27-3	Hexanol	105%	174% ^b	56-1	45%	

(a) Confirmation run.

(b) Outside of in house control limits. No associated positive result detected.

MDL = Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Report of Analysis

By

DS

Prep Date

09/14/16

Page 1 of 1

Client Sample ID: S-38

Lab Sample ID:

JC27467-6

Matrix:

AQ - Ground Water

DF

Method: Project:

SW846 8081B SW846 3510C

BMSMC, Building 5 Area, PR

Date Sampled: 09/12/16

Date Received: 09/13/16

Percent Solids: n/a

Prep Batch

OP97015

Q

Analytical Batch G4G1899

Run #1 Run #2

Initial Volume

4G72590.D

File ID

Final Volume

Analyzed

09/16/16

Run #1 990 ml 10.0 ml

Run #2

Pesticide TCL List

CAS No.	Compound	Result	RL	MDL	Units
309-00-2	Aldrin	ND	0.010	0.0061	ug/l
319-84-6	alpha-BHC	ND	0.010	0.0061	ug/l
319-85-7	beta-BHC	ND	0.010	0.0057	ug/l
319-86-8	delta-BHC	ND	0.010	0.0046	ug/l
58-89-9	gamma-BHC (Lindane)	ND	0.010	0.0028	ug/l
5103-71-9	alpha-Chlordane	ND	0.010	0.0047	ug/l
5103-74-2	gamma-Chlordane	ND	0.010	0.0046	ug/l
60-57-1	Dieldrin	ND	0.010	0.0036	ug/l
72-54-8	4,4'-DDD	ND	0.010	0.0038	ug/l
72-55-9	4,4'-DDE	0.021	0.010	0.0062	ug/l
50-29-3	4,4'-DDT	ND	0.010	0.0050	ug/l
72-20-8	Endrin	ND	0.010	0.0051	ug/l
1031-07-8	Endosulfan sulfate	ND	0.010	0.0053	ug/l
7421-93-4	Endrin aldehyde	ND	0.010	0.0052	ug/l
53494-70-5	Endrin ketone	ND	0.010	0.0051	ug/l
959-98-8	Endosulfan-I	ND	0.010	0.0050	ug/l
33213-65-9	Endosulfan-II	ND	0.010	0.0043	ug/l
76-44-8	Heptachlor	ND	0.010	0.0038	ug/l
1024-57-3	Heptachlor epoxide	ND	0.010	0.0066	ug/l
72-43-5	Methoxychlor	ND	0.020	0.0057	ug/l
8001-35-2	Toxaphene	ND	0.25	0.19	ug/l
CAS No.	Surrogate Recoveries	Run#1	Run# 2	Limi	ts
877-09-8	Tetrachloro-m-xylene	99%		26-13	32%
877-09-8	Tetrachloro-m-xylene	95%		26-13	32%
2051-24-3	Decachlorobiphenyl	90%		10-11	18%

ND = Not detected

2051-24-3

MDL = Method Detection Limit

97%

RL = Reporting Limit

E = Indicates value exceeds calibration range

Decachlorobiphenyl

J = Indicates an estimated value

10-118%

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

ACCUTEST	Gv	h		CHAI	DN (OF (CUS	то	DΥ						1	E3a	594	9				_(OF_	1 4
NJ				223 TEL 733-			n, NJ 200 732-129-34		lo				1	Phi55556169			Committee Control of							
Client / Reporting Information		383.1534°	Project Information					N 6245										74(
Continue Name		Propert House		d caning	Linutaira	100		2-14		الأملت	1000		AL SAN	1 Xec	nessi	d Ana	lysks (See T	EST C	ODE	(beet)	122	e u	latriz Codes
Anderson Mutholiand & Associates		BMSMC 3rd	Querter Groun	denter Sam	::::::::::::::::::::::::::::::::::::::	016							ă,		l	1								- Districting Water
Seest Address		Street					- <u>(15)</u> -7.	i per gan	74%	1	3800	er Te	e o	ļ		ĺ				1			- 1 1	- Grants Stear Wit - Water
2700 Westchester Averse, Suite 417 City State	Zia .	Cay		Bindu		terberage	- (14	-	race Pro-	er in	9		via 827.00								ıJ		- 1	- Surface Water SD - Saf
Purchase NY	10577	Ниниево		PR		4 1400																	s	SL-Sivige ED-Seamont
Project Centura	E-mar	Protect 8	_		Street A	-dill too							1 🖁		vis 8061B	ļ				H	<i>i</i>		Luc	OF DE
Terry Taylor Priore 8	Ford	GREET PARTIES	Onter 8		Car				100		Zas		Ę	1	🚆	1							EC	ASR - Arr L - Other Seld
914-251-0400											n/p	,	Naphthalene				1 1				ıŧ		f M	WF : Wps S-Fight Blank
Sarprets Name(s)	Режина и	Provide Manager	,		Alterdan	n.				_			1 8	via \$2700	Pesticides	2	l [ıl	ļ	CD-5	Spatement Stere. 3- Person Stands
H. Rivera,R., Shuart, J.D. Valle, D. Lind	strond	Terry Taylor	r	Colorse			_	_		4		_	- 8	22	Į Į	20155	Ιſ		Ī				1	15-Trito Chiamir
				1	Т	1						181	1,4-Diozene	Ž.	Organo	🐉 :					- 1			
Field ID / Point of Collection		MECHICI VALO	Onto	Yess	Trip.	-		2 3	ğ	Ĭ	8 9	8	1 2	BVDC	8	II.					. 1		LA	E USE ONLY
1 5-45			9-8-16	1444	NA	GIN	6	3	Π	13		- -	ĪV	7	1	V		_	-		\dashv	_		= 9
2 5-41 D			9-0-16	1620	NA	64	6	7	11	12	\vdash	\vdash	文	Ż	文	Ŝ		\neg		_				1124
3 5-32			9-9-14	1259	ALC.	15 U	1-12	3	1-1-	17	_	\vdash	忆			V		_	-	\dashv	\dashv	_		1167
4 S-35D			9-9-16	13/4	ALE	6.1	1	4	++	17	-		∀	Ŷ		₹		\dashv	\dashv	-	\dashv	\rightarrow		
5-35			9-9-16	1530	NR	GÜ	1-8-	1	11	14	-	H	 ♥	6	\Rightarrow		\dashv	\dashv	-	\neg	-	-	+	
12 5-38			9-17-16	1235	1 1	GW	6	1	╫	14	-	H		~	≎	J		-		\dashv	-		+	
			117.10	1	11615	1011		11	1-1-	14	$\vdash\vdash\vdash$	H	1	*-	~	Δ	\dashv	\dashv			-		-	
					\vdash	 	<u> </u>	H	++	Н	$\vdash\vdash$		ļ	-	-		-	-		\dashv	\dashv	+		
							-		╁┼	Н		H			-		-					-	+	
	i					├─		-	₩	Н			\vdash	-	_		\rightarrow	-	- i		\rightarrow	+	-	
				 	-		_	H	₩	Н				-						-	\dashv	\rightarrow	-	
7 · · · · · · · · · · · · · · · · · · ·	Fire SA	. کاچرنے ک		12000000	UGG A		200	55 2	212	l le	(P) (1)	9 32	300	ARCA!	F2.**	ामक	ADD I			- 100	200			
Turners of Tree (Business seed)	47 CP 2.C	12.00					(3/1				9		214			念	2619	£.	56	200	Instructi	S28 E	2 2 3	200F 344
E Std. 16 Guateress Days		-					MITST (L				HYASP				- 300	-4	12.161	LACOURT V	-MINS 7 (HISPOC.	1.3	4 4	Mary No.
Stat. 19 Bustowan Clayo (by Contract or 10 they MUSH	-dy)		_				tel "B" (L					Catego	my B		Add t	p 3V(OC rep	iort 1	-Alleth	ylnag	al-fittigle	NDF		
☐ 6 Day AUSH	-					FULLTY (HJ Radus	Livel 3+4 ad	1)		吕	Show F			Ì							11	24	1	
1 Cary EMERICANOL						Commerc				酉	Cither,			_		— IN	TIVL	~bb		inu ₂	The			
TONY EMERGENCY TO BY EMERGENCY							Coremon Coremon				E.			ŀ		- U	BEL	VER	FICA:	TION,	M			
Emergery & Rush Tell only produce Via Labor			noin Contacto do	nii ba darum			معضواا ززا	of the Re	ا و جانور	يو عو	magy -	Permit	Rev de	اب	_				A1	/				
- Harris and	-1-	16/200					h tirne na		Cluster To Land) pac	-		othing co	nucles e	toliver L	l- Ingle Tree	.930	> 0		*****	200	EX.	OF CHAP	(4) - 2 m
· //on/was		10,00	1 -			Χ		2		_	TE	25	كسار			9.13	.93C 76	[2		\mathcal{C}	<u> </u>			
MillindRehed by Odinpher 3	Chair Time.	1	Carnton Oyr 3					4	rabod by:						ŀ	his The	a.r	2	named I	m _{pt}				
Hadropolotical lay: R	Cure Titter		Annual Dy.				\neg	E //	3.50		17		-	-	-	0	-	. ,-			سرية	15	1000	2.0
						-		7 U	ווכיני	4.3	16_	ш	lum proper	-		J					ia'	4.7	2./	3.0
																								LP

JC27467: Chain of Custody Page 1 of 3

EXECUTIVE NARRATIVE

SDG No:

JC27688

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8270D

Number of Samples:

6

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY: Six (6) samples were analyzed for the ABN TCL list following method SW846-8270D; Naphthalene and 1,4-Dioxane were also analyzed by SW846-8270D using the selective ion monitoring (SIM) technique. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: EPA Hazardous Waste Support Section, SOP HW-35A, July 2015 —Revision 0. Semivolatile Data Validation. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Maior:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

1. Initial and continuing calibration verifications meet the method and guidance document required performance criteria except in the cases described in the Data Review Worksheet. Analytes not meeting the continuing calibration verification method performance criteria and validation guidance document performance criteria qualified as estimated (J) or (UJ) in affected samples.

Analytes not meeting the continuing calibration verification method performance criteria but were within the validation guidance document performance criteria were not qualified. .

No closing calibration verification included in data package. No action taken, professional judgment.

3. MS/MSD % recoveries and RPD within laboratory control limits except for the cases described the Data Review Worksheet.

Analytes that did not meet the RPD laboratory control limits in sample JC27467-1MS/MSD were not qualified on the basis of RPD, professional judgment.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

October 8, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC27467-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/8/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.2	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.6	ug/l	1	-	U	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	2.2	ug/l	1	-	U	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	UJ	Yes
Pentachlorophenol	4.4	ug/l	1	-	UJ	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	-	U	Yes
Acenaphthylene	1.1	ug/l	1	-	U	Yes
Acetophenone	2.2	ug/l	1	-	U	Yes
Anthracene	1.1	ug/l	1	-	U	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	UJ	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes

bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	UJ	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	UJ	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.6	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	UJ	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	UJ	Yes
Diethyl phthalate	2.2	ug/l	1	-	UJ	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	U	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.6	ug/l	1	-	U	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	5.6	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes
METHOD:	8270D (SII	M)				
Naphthalene	0.11	ug/l	1	-	U	Yes
1,4-Dioxane	0.921	ug/l	5	-	-	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/8/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	UJ	Yes
Pentachlorophenol	4.0	ug/l	1	-	UJ	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	UJ	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

h:-/2 Chlanathan \	2.0	- /1	4			
bis(2-Chloroethoxy)methane	2.0	ug/l	1	=	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	=	UJ	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	=	UJ	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	=	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.1	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	=	UJ	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	UJ	Yes
Diethyl phthalate	2.0	ug/l	1	-	UJ	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	-	U	Yes
Fluoranthene	1.0	ug/l	1	-	U	Yes
Fluorene	1.0	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.0	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	=	U	Yes
Hexachloroethane	2.0	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	=	U	Yes
Isophorone	2.0	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.1	ug/l	1	-	U	Yes
3-Nitroaniline	5.1	ug/l	1	-	U	Yes
4-Nitroaniline	5.1	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.1	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	J	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
, , ,		O,				
METHOD:	8270D (SI	M)				
Naphthalene	0.10	ug/l	1	-	U	Yes

1.71 ug/l

1

1,4-Dioxane

Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/9/2016 Matrix: Groundwater

METHOD:	8270D					
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.6	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.6	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	54.8	ug/l	1	-	-	Yes
2,4-Dinitrophenol	11	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.6	ug/l	1	-	U	Yes
2-Methylphenol	2.2	ug/l	1	-	U	Yes
3&4-Methylphenol	1.5	ug/l	1	J	J	Yes
2-Nitrophenol	5.6	ug/l	1	-	U	Yes
4-Nitrophenol	11	ug/l	1	-	UJ	Yes
Pentachlorophenol	4.4	ug/l	1	-	UJ	Yes
Phenol	2.2	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.6	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.6	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.6	ug/l	1	-	U	Yes
Acenaphthene	1.1	ug/l	1	=	U	Yes
Acenaphthylene	1.1	ug/l	1	=	U	Yes
Acetophenone	26.7	ug/l	1	=	=	Yes
Anthracene	0.53	ug/l	1	J	J	Yes
Atrazine	2.2	ug/l	1	-	U	Yes
Benzaldehyde	5.6	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.1	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.1	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.1	ug/l	1	-	UJ	Yes
Benzo(g,h,i)perylene	1.1	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.1	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.2	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.2	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.1	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.2	ug/l	1	-	U	Yes
4-Chloroaniline	5.6	ug/l	1	-	U	Yes
Carbazole	1.1	ug/l	1	-	U	Yes
Caprolactam	2.2	ug/l	1	-	U	Yes
Chrysene	1.1	ug/l	1	-	U	Yes

bis(2-Chloroethoxy)methane	2.2	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.2	ug/l	1	-	U	Yes
bis(2-Chloroisopropyl)ether	2.2	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.2	ug/l	1	-	UJ	Yes
2,4-Dinitrotoluene	1.1	ug/l	1	-	UJ	Yes
2,6-Dinitrotoluene	1.1	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.2	ug/l	1	-	U	Yes
Dibenzo(a,h)anthracene	1.1	ug/l	1	-	U	Yes
Dibenzofuran	5.6	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.2	ug/l	1	-	UJ	Yes
Di-n-octyl phthalate	2.2	ug/l	1	-	UJ	Yes
Diethyl phthalate	2.2	ug/l	1	-	UJ	Yes
Dimethyl phthalate	2.2	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.2	ug/l	1	-	-	Yes
Fluoranthene	1.1	ug/l	1	-	U	Yes
Fluorene	1.1	ug/l	1	-	UJ	Yes
Hexachlorobenzene	1.1	ug/l	1	-	U	Yes
Hexachlorobutadiene	1.1	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	11	ug/l	1	-	U	Yes
Hexachloroethane	2.2	ug/l	1	-	U	Yes
Indeno(1,2,3-cd)pyrene	1.1	ug/l	1	-	U	Yes
Isophorone	2.2	ug/l	1	-	U	Yes
1-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.1	ug/l	1	-	U	Yes
2-Nitroaniline	5.6	ug/l	1	-	U	Yes
3-Nitroaniline	5.6	ug/l	1	-	U	Yes
4-Nitroaniline	5.6	ug/l	1	-	U	Yes
Nitrobenzene	2.2	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.2	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.6	ug/l	1	-	U	Yes
Phenanthrene	1.1	ug/l	1	-	U	Yes
Pyrene	1.1	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.2	ug/l	1	-	U	Yes

METHOD: 8270D (SIM)

Naphthalene	0.364	ug/l	1	=	=	Yes
1,4-Dioxane	4.23	ug/l	1	-	=	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/9/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.0	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.0	ug/l	1	=	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.0	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.0	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.0	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	UJ	Yes
Pentachlorophenol	4.0	ug/l	1	-	U	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.0	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.0	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.0	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.0	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	UJ	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	UJ	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.0	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

2.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	UJ	Yes
1.0	ug/l	1	-	UJ	Yes
1.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
26.0	ug/l	1	-	=	Yes
1.0	ug/l	1	-	U	Yes
5.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	UJ	Yes
2.0	ug/l	1	-	UJ	Yes
2.0	ug/l	1	-	UJ	Yes
2.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	UJ	Yes
1.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
10	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
5.0	ug/l	1	-	U	Yes
5.0	ug/l	1	-	U	Yes
5.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
5.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
: 8270D (SI	M)				
0.10	ug/l	1	-	U	Yes
	2.0 2.0 1.0 1.0 26.0 1.0 5.0 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1	2.0 ug/l 2.0 ug/l 2.0 ug/l 1.0 ug/l 1.0 ug/l 2.0 ug/l 1.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 1.0 ug/l 1.0 ug/l 2.0 ug/l 1.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 1.0 ug/l 2.0 ug/l 1.0 ug/l 2.0 ug/l 1.0 ug/l 2.0 ug/l 2.0 ug/l 5.0 ug/l 5.0 ug/l 5.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 5.0 ug/l 5.0 ug/l 5.0 ug/l 2.0 ug/l 2.0 ug/l 5.0 ug/l	2.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1	2.0 ug/l 1 - 2.0 ug/l 1 - 2.0 ug/l 1 - 1.0 ug/l 1 - 1.0 ug/l 1 - 2.0 ug/l 1 - 1.0 ug/l 1 - 2.0 ug/l 1 - 1.0 ug/l 1 - 1.0 ug/l 1 - 2.0 ug/l 1 - 5.0 ug/l 1 - 2.0 ug/l 1 - 2.0 ug/l 1 - 5.0 ug/l 1 - 2.0 ug/l 1 - 5.0 u	2.0 ug/l 1 - U 2.0 ug/l 1 - UJ 1.0 ug/l 1 - UJ 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0

Sample location: BMSMC Building 5 Area

Sampling date: 9/9/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	=	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	=	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	UJ	Yes
Pentachlorophenol	4.0	ug/l	1	-	UJ	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	=	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	=	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	=	U	Yes
Acetophenone	2.0	ug/l	1	=	U	Yes
Anthracene	1.0	ug/l	1	=	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	=	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	UJ	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	=	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	=	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	=	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	=	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	=	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes
Chrysene	1.0	ug/l	1	-	U	Yes

2.0	ug/l	1	_	U	Yes
2.0		1	-	U	Yes
2.0	_	1	-	U	Yes
2.0	_	1	-	UJ	Yes
1.0	ug/l	1	=	UJ	Yes
1.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
372	ug/l	10	-	-	Yes
1.0	ug/l	1	-	U	Yes
5.1	ug/l	1	-	U	Yes
2.0	ug/l	1	-	UJ	Yes
2.0	ug/l	1	=	UJ	Yes
2.0	ug/l	1	=	UJ	Yes
2.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
1.0	ug/l	1	=	UJ	Yes
1.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
10	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
1.0	ug/l	1	-	U	Yes
5.1	ug/l	1	-	U	Yes
5.1	ug/l	1	-	U	Yes
5.1	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
5.1	ug/l	1	-	U	Yes
1.0	ug/l	1	=	U	Yes
1.0	ug/l	1	-	U	Yes
2.0	ug/l	1	-	U	Yes
8270D (SI	M)				
0.10	ug/l	1	-	U	Yes
	2.0 2.0 1.0 1.0 2.0 372 1.0 5.1 2.0 2.0 2.0 2.0 1.0 1.0 1.0 1.0 1.0 1.0 5.1 5.1 5.1 5.1 2.0 2.0 5.1 1.0 2.0 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1 5.1	2.0 ug/l 2.0 ug/l 2.0 ug/l 1.0 ug/l 1.0 ug/l 1.0 ug/l 372 ug/l 372 ug/l 1.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 1.0 ug/l 2.0 ug/l 2.0 ug/l 1.0 ug/l 1.0 ug/l 1.0 ug/l 2.0 ug/l 1.0 ug/l 5.1 ug/l 5.1 ug/l 5.1 ug/l 5.1 ug/l 5.1 ug/l 2.0 ug/l 2.0 ug/l 2.0 ug/l 3.0 ug/l	2.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 372 ug/l 10 1.0 ug/l 1 5.1 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1	2.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 372 ug/l 10 1.0 ug/l 1 5.1 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1 1.0 ug/l 1 2.0 ug/l 1 1.0 ug/l 1	2.0 ug/l 1 - U 2.0 ug/l 1 - UJ 1.0 ug/l 1 - UJ 2.0 ug/l 1 - UJ 1.0 ug/l 1 - UJ 2.0 ug/l 1 - UJ 1.0 ug/l 1 - UJ 2.0 ug/l 1 - UJ 1.0 ug/l 1 - UJ

Sample location: BMSMC Building 5 Area

Sampling date: 9/12/2016 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
2-Chlorophenol	5.1	ug/l	1	-	U	Yes
4-Chloro-3-methyl phenol	5.1	ug/l	1	-	U	Yes
2,4-Dichlorophenol	2.0	ug/l	1	-	U	Yes
2,4-Dimethylphenol	5.1	ug/l	1	-	U	Yes
2,4-Dinitrophenol	10	ug/l	1	-	U	Yes
4,6-Dinitro-o-cresol	5.1	ug/l	1	-	U	Yes
2-Methylphenol	2.0	ug/l	1	-	U	Yes
3&4-Methylphenol	2.0	ug/l	1	-	U	Yes
2-Nitrophenol	5.1	ug/l	1	-	U	Yes
4-Nitrophenol	10	ug/l	1	-	UJ	Yes
Pentachlorophenol	4.0	ug/l	1	-	UJ	Yes
Phenol	2.0	ug/l	1	-	U	Yes
2,3,4,6-Tetrachlorophenol	5.1	ug/l	1	-	U	Yes
2,4,5-Trichlorophenol	5.1	ug/l	1	-	U	Yes
2,4,6-Trichlorophenol	5.1	ug/l	1	-	U	Yes
Acenaphthene	1.0	ug/l	1	-	U	Yes
Acenaphthylene	1.0	ug/l	1	-	U	Yes
Acetophenone	2.0	ug/l	1	-	U	Yes
Anthracene	1.0	ug/l	1	-	U	Yes
Atrazine	2.0	ug/l	1	-	U	Yes
Benzaldehyde	5.1	ug/l	1	-	U	Yes
Benzo(a)anthracene	1.0	ug/l	1	-	U	Yes
Benzo(a)pyrene	1.0	ug/l	1	-	U	Yes
Benzo(b)fluoranthene	1.0	ug/l	1	-	UJ	Yes
Benzo(g,h,i)perylene	1.0	ug/l	1	-	U	Yes
Benzo(k)fluoranthene	1.0	ug/l	1	-	U	Yes
4-Bromophenyl phenyl ether	2.0	ug/l	1	-	U	Yes
Butyl benzyl phthalate	2.0	ug/l	1	-	U	Yes
1,1'-Biphenyl	1.0	ug/l	1	-	U	Yes
2-Chloronaphthalene	2.0	ug/l	1	-	U	Yes
4-Chloroaniline	5.1	ug/l	1	-	U	Yes
Carbazole	1.0	ug/l	1	-	U	Yes
Caprolactam	2.0	ug/l	1	-	U	Yes

Chrysene	1.0	ug/l	1	-	U	Yes
bis(2-Chloroethoxy)methane	2.0	ug/l	1	-	U	Yes
bis(2-Chloroethyl)ether	2.0	ug/l	1	-	U	Yes
bis (2-Chlorois opropyl) ether	2.0	ug/l	1	-	U	Yes
4-Chlorophenyl phenyl ether	2.0	ug/l	1	-	UJ	Yes
2,4-Dinitrotoluene	1.0	ug/l	1	-	UJ	Yes
2,6-Dinitrotoluene	1.0	ug/l	1	-	U	Yes
3,3'-Dichlorobenzidine	2.0	ug/l	1	-	U	Yes
1,4-Dioxane	2470	ug/l	50	-	_	Yes
Dibenzo(a,h)anthracene	1.0	ug/l	1	-	U	Yes
Dibenzofuran	5.1	ug/l	1	-	U	Yes
Di-n-butyl phthalate	2.0	ug/l	1	-	UJ	Yes
Di-n-octyl phthalate	2.0	ug/l	1	-	UJ	Yes
Diethyl phthalate	2.0	ug/l	1	=	UJ	Yes
Dimethyl phthalate	2.0	ug/l	1	-	U	Yes
bis(2-Ethylhexyl)phthalate	2.0	ug/l	1	=	U	Yes
Fluoranthene	1.0	ug/l	1	=	U	Yes
Fluorene	1.0	ug/l	1	=	UJ	Yes
Hexachlorobenzene	1.0	ug/l	1	=	U	Yes
Hexachlorobutadiene	1.0	ug/l	1	-	U	Yes
Hexachlorocyclopentadiene	10	ug/l	1	=	U	Yes
Hexachloroethane	2.0	ug/l	1	=	U	Yes
Indeno(1,2,3-cd)pyrene	1.0	ug/l	1	-	U	Yes
Isophorone	2.0	ug/l	1	=	U	Yes
1-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Methylnaphthalene	1.0	ug/l	1	-	U	Yes
2-Nitroaniline	5.1	ug/l	1	-	U	Yes
3-Nitroaniline	5.1	ug/l	1	-	U	Yes
4-Nitroaniline	5.1	ug/l	1	-	U	Yes
Nitrobenzene	2.0	ug/l	1	-	U	Yes
N-Nitroso-di-n-propylamine	2.0	ug/l	1	-	U	Yes
Nitrosodiphenylamine	5.1	ug/l	1	-	U	Yes
Phenanthrene	1.0	ug/l	1	-	U	Yes
Pyrene	1.0	ug/l	1	-	U	Yes
1,2,4,5-Tetrachlorobenzene	2.0	ug/l	1	-	U	Yes
MFTHOD:	8270D (SI	M)				
		,				

0.10

ug/l

1

U

Yes

Naphthalene

	Project Number:_JC27467
	Date:September_08-12,_2016
	Shipping Date:September_12,_2016
	EPA Region:2
REVIEW OF SEMIVOLATILE C	PRGANIC PACKAGE
The following guidelines for evaluating volatile organization actions. This document will assist the remake more informed decision and in better serving results were assessed according to USEPA data following order of precedence: EPA Hazardous V 2015—Revision 0. Semivolatile Data Validation. The Quon the data review worksheets are from the prima noted.	eviewer in using professional judgment to the needs of the data users. The sample a validation guidance documents in the Vaste Support Section, SOP HW-35A, July C criteria and data validation actions listed
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance data included:	
Lab. Project/SDG No.:JC27467 No. of Samples:6_SIM/6_SCAN	
Trip blank No.:	
Field blank No.:	
Equipment blank No.:	
Field duplicate No.:	
X Data CompletenessX Holding TimesX GC/MS TuningX Internal Standard PerformanceX BlanksX Surrogate RecoveriesX Matrix Spike/Matrix Spike Duplicate	X Laboratory Control SpikesX Field DuplicatesX CalibrationsX Compound IdentificationsX Compound QuantitationX Quantitation Limits
Overall Commenter CVOCs TOL sessial list and lead	L41 OMO 40 0070D
_Overall Comments:_SVOCs_TCL_special_list_analyzed	
_Naphthalene_and_1,4-Dioxane_analyzed_by_method_S	399840-827UD_(SIM)
Definition of Qualifiers:	
J- Estimated results U- Compound not detected R- Rejected data UJ- Estimated condetect Reviewer: 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
<u></u>		
	<u> </u>	
	V	
	<u> </u>	
	<u> </u>	
<u> </u>		1
	У 9————————————————————————————————————	
	2,63	1

All criteria were met _X
Critena were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED		ACTION
		alyzed within method recomescribed in this document.	mend	ded holding time. Samples property
	<u> </u>			

Cooler temperature (Criteria: 4 ± 2 °C):	3.9°C
--	-------

Actions

Results will be qualified based on the criteria of the following Table:

Table 1. Holding Time Actions for Semivolatile Analyses

		Ing Time Actions for Senity	Y	tion
Matrix	Preserved	Criteria	Detected Associated Compounds	Non-Detected Associated Compounds
	No	≤7 days (for extraction) ≤40 days (for analysis)	Use professi	onal judgment
	No	> 7 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
Aqueous	Yes	≤ 7 days (for extraction) ≤ 40 days (for analysis)	No qualification	
	Yes	> 7 days (for extraction) > 40 days (for analysis)	J	ບມ
	Yes/No	Grossly Exceeded	J	UJ or R
	No	≤ 14 days (for extraction) ≤ 40 days (for analysis)	Use professional judgment	
Non Aquaqua	No	> 14 days (for extraction) > 40 days (for analysis)	J	Use professional judgment
Non-Aqueous	Yes	≤ 14 days (for extraction) ≤ 40 days (for analysis)	No qualification	
	Yes	> 14 days (for extraction) > 40 days (for analysis)	J	UJ
	Yes/No	Grossly Exceeded	J	UJ or R

All criteria were metX	
Criteria were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits

- _X__ The DFTPP performance results were reviewed and found to be within the specified criteria.
- _X__ DFTPP tuning was performed for every 12 hours of sample analysis.

If no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.

Notes: These requirements do not apply when samples are analyzed by the Selected Ion Monitoring (SIM) technique.

All mass spectrometer conditions must be identical to those used during the sample analysis. Background subtraction actions resulting in spectral distortion are unacceptable

Notes: No data should be qualified based of DFTPP failure.

The requirement to analyze the instrument performance check solution is optional when analysis of PAHs/pentachlorophenol is to be performed by the SIM technique.

LIST	tne	samples	affected:

Actions:

- 1. If sample are analyzed without a preceding valid instrument performance check or are analyzed 12 hours after the Instrument Performance Check, qualify all data in those samples as unusable (R).
- 2. If ion abundance criteria are not met, use professional judgment to determine to what extent the data may be utilized.
- 3. State in the Data Review Narrative, decisions to use analytical data associated with DFTPP instrument performance checks not meeting the contract requirements.
- 4. Use professional judgment to determine if associated data should be qualified based on the spectrum of the mass calibration compounds.

All criteria were metX
Criteria were not met
and/or see below

INITIAL CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

08/26/16_(SIM)
GCMS3M
Aqueous/low
08/23/16(SCAN) GCMS6P Aqueous/low
09/14-15/16(SCAN)_ GCMS2P
Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initial	and initi	ial calib		ets the method and guidance verance criteria.	alidation document

Note:

Actions:

Qualify the initial calibration analytes listed in Table 2 using the following criteria:

Table 3. Initial Calibration Actions for Semivolatile Analysis

Criteria		Action
Criteria	Detect	Non-detect
Initial Calibration not performed at specified frequency and sequence	Use professional judgment R	Use professional judgment R
Initial Calibration not performed at the specified concentrations	J	UJ.
RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J+ or R	R
RRF ≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification
%RSD > Maximum %RSD in Table 2 for target analyte	J	Use professional judgment
%RSD ≤ Maximum %RSD in Table 2 for target analyte	No qualification	No qualification

Initial Calibration

 $\begin{tabular}{ll} Table 2. &RRF, \% RSD, and \% D \ Acceptance \ Criteria \ in Initial \ Calibration \ and \ CCV \ for \ Semivolatile \ Analysis \end{tabular}$

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Opening Maximum %D¹
1,4-Dioxane	0.010	40.0	± 40.0	± 50.0
Benzaldehyde	0.100	40.0	±40.0	±50.0
Phenol	0.080	20.0	± 20.0	±25.0
Bis(2-chloroethyl)ether	0.100	20.0	± 20.0	±25.0
2-Chlorophenol	0.200	20.0	±20.0	±25.0
2-Methylphenol	0.010	20.0	± 20.0	±25.0
3-Methylphenol	0.010	20.0	±20.0	±25.0
2,2'-Oxybis-(1-chloropropane)	0.010	20.0	± 25.0	±50.0
Acetophenone	0.060	20.0	± 20.0	±25.0
4-Methylphenol	0.010	20.0	± 20.0	±25.0
N-Nitroso-di-n-propylamine	0.080	20.0	£25.0	±25.0
lexachloroethane	0.100	20.0	± 20.0	±25.0
Nitrobenzene	0.090	20.0	±20.0	±25.0
Isophorone	0.100	20.0	±20.0	±25.0
2-Nitrophenol	0.060	20.0	±20.0	±25.0
2,4-Dimethylphenol	0.050	20.0	±25.0	±50.0
Bis(2-chloroethoxy)methane	0.080	20.0	±20.0	±25.0
2,4-Dichlorophenol	0.060	20.0	± 20.0	± 25.0
Naphthalene	0.200	20.0	± 20.0	±25.0
4-Chloroaniline	0.010	40.0	± 40.0	± 50.0
Hexachlorobutadiene	0.040	20.0	± 20.0	±25.0
Caprolactam	0.010	40.0	± 30.0	± 50.0
4-Chloro-3-methylphenol	0.040	20.0	± 20.0	±25.0
2-Methylnaphthalene	0.100	20.0	± 20.0	±25.0
lexachlorocyclopentadiene	0.010	40.0	± 40.0	± 50.0
2,4,6-Trichlorophenol	0.090	20.0	± 20.0	±25.0
2,4,5-Trichlorophenol	0.100	20.0	±20.0	±25.0
I,I'-Biphenyl	0.200	20.0	±20.0	±25.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D ¹
2-Chloronaphthalene	0.300	20.0	±20.0	±25.0
2-Nitroaniline	0.060	20.0	±25.0	± 25.0
Dimethylphthalate	0.300	20.0	±25.0	±25.0
2,6-Dinitrotoluene	0.080	20.0	± 20.0	± 25.0
Acenaphthylene	0.400	20.0	±20.0	± 25.0
3-Nitroaniline	0.010	20.0	±25.0	± 50.0
Acenaphthene	0.200	20.0	±20.0	±25.0
2,4-Dinitrophenol	0.010	40.0	± 50.0	± 50.0
4-Nitrophenol	0.010	40.0	± 40.0	± 50.0
Dibenzofuran	0.300	20,0	± 20.0	± 25.0
2,4-Dinitrotoluene	0.070	20.0	±20.0	±25.0
Diethylphthalate	0.300	20.0	±20.0	±25.0
1,2,4,5-Tetrachlorobenzene	0.100	20.0	± 20.0	±25.0
4-Chlorophenyl-phenylether	0.100	20.0	±20.0	±25.0
Fluorene	0.200	20.0	±20.0	± 25.0
4-Nitroaniline	0.010	40.0	± 40.0	± 50.0
4,6-Dinitro-2-methylphenol	0.010	40.0	±30.0	± 50.0
4-Bromophenyl-phenyl ether	0.070	20.0	± 20.0	±25.0
N-Nitrosodiphenylamine	0.100	20.0	±20.0	±25.0
Hexachlorobenzene	0.050	20.0	± 20.0	±25.0
Atrazine	0.010	40.0	±25.0	± 50.0
Pentachlorophenol	0.010	40.0	±40.0	±50.0
Phenanthrene	0.200	20.0	±20.0	±25.0
Anthracene	0.200	20.0	± 20.0	± 25.0
Carbazole	0.050	20.0	± 20.0	±25.0
Di-n-butylphthalate	0,500	20.0	±20.0	±25.0
Fluoranthene	0.100	20.0	±20.0	±25.0
Pyrene	0.400	20.0	±25.0	± 50.0
Butylbenzylphthalate	0.100	20.0	±25.0	± 50.0

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D ¹	Opening Maximum %D'
3,3'-Dichlorobenzidine	0.010	40.0	± 40.0	± 50.0
Benzo(a)anthracene	0.300	20.0	± 20.0	± 25.0
Chrysene	0.200	20.0	± 20.0	± 50.0
Bis(2-ethylhexyl) phthalate	0.200	20.0	±25.0	± 50.0
Di-n-octylphthalate	0.010	40.0	±40.0	± 50.0
Benzo(b)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(k)fluoranthene	0.010	20.0	±25.0	± 50.0
Benzo(a)pyrene	0.010	20.0	± 20.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.010	20.0	±25.0	± 50.0
Dibenzo(a,h)anthracene	0.010	20.0	±25.0	± 50.0
Benzo(g,h,i)perylene	0.010	20.0	± 30.0	± 50.0
2,3,4,6-Tetrachlorophenol	0.040	20.0	± 20.0	± 50.0
Naphthalene	0.600	20.0	±25.0	± 25.0
2-Methylnaphthalene	0.300	20.0	±20.0	±25.0
Acenaphthylene	0.900	20.0	±20.0	± 25.0
Acenaphthene	0.500	20.0	± 20.0	± 25.0
Fluorene	0.700	20,0	±25.0	± 50.0
Phenanthrene	0.300	20.0	±25.0	± 50.0
Anthracene	0.400	20.0	±25.0	± 50.0
Fluoranthene	0.400	20.0	±25.0	± 50.0
Pyrene	0.500	20.0	±30.0	± 50.0
Benzo(a)anthracene	0.400	20.0	±25.0	± 50.0
Chyrsene	0.400	20.0	±25.0	± 50.0
Benzo(b)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(k)fluoranthene	0.100	20.0	± 30.0	± 50.0
Benzo(a)pyrene	0.100	20.0	± 25.0	± 50.0
Indeno(1,2,3-cd)pyrene	0.100	20.0	± 40.0	± 50.0
Dibenzo(a,h)anthracene	0.010	25.0	± 40.0	± 50.0
Benzo(g,h,i)perylene	0.020	25.0	± 40.0	± 50.0

Pentachlorophenol	0.010	40.0	± 50.0	± 50.0		
Deuterated Monitoring Compounds						

Analyte	Minimum RRF	Maximum %RSD	Opening Maximum %D¹	Closing Maximum %D
1,4-Dioxane-d ₈	0.010	20.0	±25.0	± 50.0
Phenol-ds	0.010	20.0	±25.0	±25.0
Bis-(2-chloroethyl)ether-d ₈	0.100	20.0	±20.0	±25.0
2-Chlorophenol-d ₄	0.200	20.0	± 20.0	± 25.0
4-Methylphenol-d ₈	0.010	20.0	± 20.0	±25.0
4-Chloroaniline-d ₄	0.010	40.0	± 40.0	± 50.0
Nitrobenzene-ds	0.050	20.0	± 20.0	±25.0
2-Nitrophenol-d ₄	0.050	20.0	± 20.0	±25.0
2,4-Dichlorophenol-d ₃	0.060	20.0	± 20.0	±25.0
Dimethylphthalate-d ₆	0.300	20.0	± 20.0	±25.0
Acenaphthylene-d ₈	0.400	20.0	± 20.0	±25.0
4-Nitrophenol-d₄	0.010	40.0	± 40.0	± 50.0
Fluorene-d ₁₀	0.100	20.0	± 20.0	±25.0
4,6-Dinitro-2-methylphenol-d2	0.010	40.0	±30.0	±50.0
Anthracene-d ₁₀	0.300	20.0	± 20.0	± 25.0
Pyrene-d ₁₀	0,300	20.0	± 25.0	± 50.0
Benzo(a)pyrene-d ₁₂	0.010	20.0	±20.0	± 50.0
Fluoranthene-d ₁₀ (SIM)	0.400	20.0	± 25.0	± 50.0
2-Methylnaphthalene-d10 (SIM)	0.300	20.0	± 20.0	±25.0

If a closing CCV is acting as an opening CCV, all target analytes must meet the requirements for an opening CCV.

Note: If analysis by SIM technique is requested for PAH/pentachlorophenols, calibration standards analyzed at 0.10, 0.20, 0.40, 0.80, and 1.0 ng/uL for each target compound of interest and the associated DMCs. Pentachlorophenol will require only a four point initial calibration at 0.20, 0.40, 0.80, and 1.0 ng/uL.

All criteria were met	
Criteria were not met	
and/or see belowX	

CONTINUING CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	08/26/16_(SIM)
	tion (ICV):08/26/16
	erification (CCV):_09/14/16;_09/15/16_
Date of closing CCV:	<u> </u>
Instrument ID numbers:	GCMS3M
	Aqueous/low
Date of initial calibration:	08/23/16_(Scan)
Date of initial calibration verification	tion (ICV):_08/23/16
Date of continuing calibration ve	erification (CCV):_09/14/16;_09/15/16_
Date of closing CCV:	-
Instrument ID numbers:	GCM6SP
Matrix/Level:	Aqueous/low
Date of initial calibration:	09/14-15/16_(Scan)
Date of initial calibration verification	tion (ICV):_09/14-15/16
Date of continuing calibration ve	rification (CCV):_09/21/16
Date of closing CCV:	
Instrument ID numbers:	GCMS2P
Matrix/Level:	Aqueous/low

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
GCMS6P				
09/14/16	cc1353-50	25.6 %	1,4-dioxane*	JC27467-1; -2; -3;
		-27.6 %	Hexachlorobutadiene*	-5; -6
		-36.7 %	Hexachlorocyclopentadiene*	
		-52.2 %	4-nitrophenol	
		-28.3 %	2,4-dinitrotoluene	
		-21.9 %	Diethylphthalate	
		-22.0 %	Fluorene	
		-22.4 %	4-chlorophenyl-phenyl ether	
		-23.0 %	4,6-dinitro-o-cresol*	
		-40.2 %	Pentachlorophenol	
		-22.9 %	di-n-butylphthalate	
		-46.3 %	di-n-octylphthalate	
		-32.7 %	Benzo(b)fluoranthene	
09/14/16	cc1354-50	30.4 %	Benzaldehyde*	JC27467-1; -2; -3;
	<u> </u>			-5; - <u>6</u>

DATE	LAB FILE	CRITERIA OUT	COMPOUND	SAMPLES
	ID#	RFs, %RSD, <u>%D</u> , r		AFFECTED
GCMS6P				·
09/15/16	cc1353-25	27.0 %	Caprolactam*	JC27467-5(10x); -6 (20x)
		-54.5 %	4-nitrophenol	
		-21.0 %	Diethylphthalate	
		-25.1 %	di-n-butylphthalate	
		-70.1 %	di-n-octylphthalate	
		-32.7 %	Benzo(g,h,i)perylene	
09/15/16	cc1353-50	27.7	Caprolactam*	JC2746 -4
		-24.1 %	Hexachlorobutadiene*	
•		-28.6 %	Hexachlorocyclopentadiene*	
,		-80.3 %	4-nitrophenol	
		-27.4 %	2,4-dinitrotoluene	
		-27.4 %	Diethylphthalate	
		-24.4 %	Fluorene	
-		-21.4 %	4-chlorophenyl-phenyl ether	
		-33.9 %	Pentachlorophenol*	
'		-28.6 %	di-n-butylphthalate	
		-79.4 %	di-n-octylphthalate	
		-46.0 %	Benzo(b)fluoranthene	
		-22.7 %	Benzo(k)fluoranthene	
09/15/16	cc1354-50	30.6 %	Benzaldehyde*	JC27467-4

Note: Initial and continuing calibration verifications meet the method and guidance document required performance criteria except for the cases described in this document.

Analytes not meeting the method and guidance document performance criteria are qualified as estimated (J) or (UJ) in affected samples.

* Analytes not meeting the method performance criteria but within the guidance document performed criteria. No action taken.

No closing calibration verification included in data package. No action taken, professional judgment.

GCMS2P used in this project for QC samples. QC samples are not validated.

Samples JC27467-5(10x) and JC27467-6 (20x), analyzed for 1,4-dioxane.

Actions:

Notes: Verify that the CCV is run at the required frequency (an opening and closing CCV must be run within 12-hour period).

All DMCs must meet the RRF values given in Table 2. No qualification of the data is necessary on DMCs RRF and %RSD/%D alone. Use professional judgment to evaluate DMCs and %RSD/%D data in conjunction with DMCs recoveries to determine the need for qualification of the data.

Qualify the initial calibration analytes listed in Table 2 using the following criteria in the CCVs:

Table 4. CCV Actions for Semivolatile Analysis

Criteria for Opening CCV	Criteria for Closing CCV -	Action		
Chiera for Opening CCV	Criteria for Closing CCV	Detect	Non-detect	
CCV not performed at required frequency and sequence	CCV not performed at required frequency	Use professional judgment R	Use professional judgment R	
CCV not performed at specified concentration	CCV not performed at specified concentration	Use professional judgment	Use professional judgment	
RRF < Minimum RRF in Table 2 for target analyte	RRF < Minimum RRF in Table 2 for target analyte	Use professional judgment J or R	R	
RRF ≥ Minimum RRF in Table 2 for target analyte	RRF≥ Minimum RRF in Table 2 for target analyte	No qualification	No qualification	
%D outside the Opening Maximum %D limits in Table 2 for target analyte	%D outside the Closing Maximum %D limits in Table 2 for target analyte	J	ſIJ	
%D within the inclusive Opening Maximum %D limits in Table 2 for target analyte	%D within the inclusive Closing Maximum %D limits in Table 2 for target analyte	No qualification	No qualification	

All criteria were met _X
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Notes: The concentration of non-target compounds in all blanks must be less than or equal to 10 ug/L.

The concentration of target compounds in all blanks must be less than its CRQL listed in the method.

Samples taken from a drinking water tap do not have and associated field blank.

Laboratory blanks

Note:

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_target_ana	alytes_detected	_in_method_bla	anks	
Field/Equipmen	t/Trip blank			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/ed	quipment_blank	s_analyzed_wit	h_this_data_package	
		270274		
	102	74		

14

All criteria were met _X	
Criteria were not met	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Qualify samples based on the criteria summarized in Table 5:

Table 5. Blank and TCLP/SPLP LEB Actions for Semivolatile Analysis

Blank Type	Blank Result	Sample Result	Action
Method,	Detect	Non-detect	No qualification
	< CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL	Use professional judgment
	≥CRQL	< CRQL	Report at CRQL and qualify as non-detect (U)
		≥ CRQL but < Blank Result	Report at sample results and qualify as non-detect (U) or as unusable (R)
TCLP/SPLP LEB, Field		≥ CRQL and ≥ Blank Result	Use professional judgment
	Grossly high	Detect	Report at sample results and qualify as unusable (R)
	TIC > 5.0 ug/L (water) or 0.0050 mg/L (TCLP leachate) or TIC > 170 ug/Kg (soil)	Detect	Use professional judgment

List samples qualified

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met _X
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES - DEUTERATED MONITORING COMPOUNDS (DMCs)

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries – deuterated monitoring compounds. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

Notes: Recoveries for DMCs in samples and blanks must be within the limits specified in Table 6.

The recovery limits for any of the compounds listed in Table 6 may be expanded at any time during the period of performance if USEPA determines that the limits are too restrictive.

If a DMC is not added in the samples and blanks or the concentrations of DMCs in the samples and blank not the specified, use professional judgment in qualifying the data.

No qualification

J+

No qualification

No qualification

Table 7. DMC Actions for Semivolatile Analysis

List the percent recoveries (%Rs) which do not meet the criteria for DMCs (surrogate) recovery.

Lower Acceptance limit $\leq \%R \leq Upper Acceptance Limit$

%R > Upper Acceptance Limit

Croundwater

مدنسهمالة

SAMPLE ID	SURROGATE COMPOUND	ACTION
DIALOS LLICOL RIC TORRIT		
	red_criteria_in_all_samples_analyzedNonde _were_within_laboratory_recovery_limitst	

Table 8. Semivolatile DMCs and the Associated Target Analytes

1.4 Discound (DMC 1) Dbd. (DMC 2) Dis/2 Charactery atd.				
1,4-Dioxane-d ₈ (DMC-1)	Phenol-d ₅ (DMC-2)	Bis(2-Chloroethyl) ether-d ₈ (DMC-3)		
1,4-Dioxane	Benzaldehyde	Bis(2-chloroethyl)ether		
	Phenol	2,2'-Oxybis(1-chloropropane)		
		Bis(2-chloroethoxy)methane		
2-Chlorophenol-d ₄ (DMC-4)	4-Methylphenol-da (DMC-5)	4-Chloroaniline-d ₄ (DMC-6)		
2-Chlorophenol	2-Methylphenol	4-Chloroaniline		
	3-Methylphenol	Hexachlorocyclopentadiene		
	4-Methylphenol	Dichlorobenzidine		
	2,4-Dimethylphenol			
Nitrobenzene-d ₅ (DMC-7)	2-Nitrophenol-d ₄ (DMC-8)	2,4-Dichlerophenol-d3(DMC-9)		
Acetophenone	Isophorone	2,4-Dichlorophenol		
N-Nitroso-di-n-propylamine	2-Nitrophenol	Hexachlorobutadiene		
Hexachloroethane		Hexachlorocyclopentadiene		
Nitrobenzene		4-Chloro-3-methylphenol		
2,6-Dinitrotoluene		2,4,6-Trichlorophenol		
2,4-Dinitrotoluene		2,4,5-Trichlorophenol		
N-Nitrosodiphenylamine		1,2,4,5-Tetrachlorobenzene		
		*Pentachlorophenol		
		2,3,4,6-Tetrachlorophenol		
Dimethylphthalate-d ₆ (DMC-10)	Acenaphthylene-da (DMC-11)	4-Nitrophenol-d ₄ (DMC-12)		
Caprolactam	*Naphthalene	2-Nitroaniline		
1,1'-Biphenyl	*2-Methylnaphthalene	3-Nitroaniline		
Dimethylphthalate	2-Chloronaphthalene	2,4-Dinitrophenol		
Diethylphthalate	*Acenaphthylene	4-Nitrophenol		
Di-n-butylphthalate	*Acenaphthene	4-Nitroaniline		
Butylbenzylphthalate				
Bis(2-ethylhexyl) phthalate				
Di-n-octy/phthalate				

Fluorene-d ₁₀ (DMC-13)	4,6-Dinitro-2-methylphenol-d ₂ (DMC-14)	Anthracene-d ₁₀ (DMC-15)
Dibenzofuran *Fluorene 4-Chlorophenyl-phenylether 4-Bromophenyl-phenylether	4,6-Dinitro-2-methylphenol	Hexachlorobenzene Atrazine *Phenanthrene *Anthracene
Carbazole Pyrene-d ₁₀ (DMC-16)	Benzo(a)pyrene-d ₁₂ (DMC-17)	
*Fluoranthene *Pyrene *Benzo(a)anthracene *Chrysene	3,3'-Dichlorobenzidine *Benzo(b)fluoranthene *Benzo(a)fluoranthene *Benzo(a)pyrene *Indeno(1,2,3-cd)pyrene *Dibenzo(a,h)anthracene *Benzo(g,h,i)perylene	

^{*}Included in optional Target Analyte List (TAL) of PAHs and PCP only.

Table 9. Semivolatile SIM DMCs and the Associated Target Analytes

Fluoranthene-d10 (DMC-1)	2-Methylnaphthalene-d10 (DMC-2)
Fluoranthene	Naphthalene
Pyrene	2-Methylnaphthalene
Benzo(a)anthracene	Acenaphthylene
Chrysene	Acenaphthene
Benzo(b)fluoranthene	Fluorene
Benzo(k)fluoranthene	Pentachlorophenol
Benzo(a)pyrene	Phenanthrene
Indeno(1,2,3-cd)pyrene	Anthracene
Dibenzo(a,h)anthracene	
Benzo(g,h,i)perylene	

All criteria were met	
Criteria were not met	
and/or see belowX	

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

NOTES:

Data for MS and MSDs will not be present unless requested by the Region. Notify the Contract Laboratory COR if a field or trip blank was used for the MS and MSD.

For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC27467-1 Sample ID:JC27467-2_(SiM)							Matrix/Level:Groundwater Matrix/Level:Groundwater			
The QC reports JC27467-1, JC							27467-		d: SW84	6 8270D
Compound	JC2746 ug/l	67-1 Q	Spike ug/l	MS ug/l	MS %	Spike ug/l	MSD ug/i	MSD %	RPD	Limits Rec/RPD
•	-	Q	•			Ū	ŭ			
Hexachlorobutadiene Hexachloroethane	ND ND		100 100	94.7 75.9	95 76	100 100	71.2 58.0	71 58	28* a 27* a	26-121/24 35-111/26

⁽a) Analytical precision exceeds in-house control limits.

Note: No action taken on samples with RPD outside control limits, professional judgment.

^{* =} Outside of Control Limits.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- f QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

A separate worksheet should be used for each MS/MSD pair.

All criteria were met _X
Criteria were not mel
and/or see below

INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

DATE SAMPLE ID IS OUT IS AREA ACCEPTABLE ACTION RANGE

Internal area meets the required criteria of batch samples corresponding to this data package.

Action:

- 1. If an internal standard area count for a sample or blank is greater than 213.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration) (see Table 10 below):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated low (J-).
 - b. Do not qualify non-detected associated compounds.
- 2. If an internal standard area count for a sample or blank is less than 20.0% of the area for the associated standard (opening CCV or mid-point standard from initial calibration):
 - a. Qualify detects for compounds quantitated using that internal standard as estimated high (J+).
 - b. Qualify non-detected associated compounds as unusable (R).
- 3. If an internal standard area count for a sample or blank is greater than or equal to 50.0%, and less than or equal to 213% of the area for the associated standard opening CCV or mid-point standard from initial calibration, no qualification of the data is necessary.
- 4. If an internal standard RT varies by more than 10.0 seconds: Examine the chromatographic profile for that sample to determine if any false positives or negatives exist. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for that sample fraction. Detects should not need to be qualified as unusable (R) if the mass spectral criteria are met.
- 5. If an internal standard RT varies by less than or equal to 10.0 seconds, no qualification of the data is necessary.

Note: Inform the Contract Laboratory Program Project Officer (CLP PO) if the internal standard performance criteria are grossly exceeded. Note in the Data Review Narrative potential effects on the data resulting from unacceptable internal standard performance.

State in the Data Review Narrative if the required internal standard compounds are not added to a sample or blank or if the required internal standard compound is not analyzed at the specified concentration.

Actions:

Table 10. Internal Standard Actions for Semivolatile Analysis

Criteria	Action			
Cineria	Detect	Non-detect		
Area response < 20% of the opening CCV or mid-point standard CS3 from ICAL	J+	R		
20% ≤ Area response < 50% of the opening CCV or mid-point standard CS3 from ICAL	J+	UJ		
50% ≤ Area response ≤ 200% of the opening CCV or mid-point standard CS3 from ICAL	No qualification	No qualification		
Area response > 200% of the opening CCV or mid-point standard CS3 from ICAL	J-	No qualification		
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL > 10.0 seconds	R	R		
RT shift between sample/blank and opening CCV or mid-point standard CS3 from ICAL < 10.0 seconds	No qualification	No qualification		

		All criteria were metX Criteria were not met and/or see below	
TARGET COM	POUND IDENTIFICATION		
Criteria:			
Is the Relative RRT [opening calibration].	Retention Times (RRTs) of reported compour Continuing Calibration Verification (CCV)	nds within ±0.06 RRT units of the stan or mid-point standard from the in Yes? or No?	daro nitia
List compound	s not meeting the criteria described above:		
Sample ID	Compounds	Actions	
			
	the associated calibration standard (opening ust match according to the following criteria: All ions present in the standard mass spectromust be present in the sample spectrum. The relative intensities of these ions must again sample spectra (e.g., for an ion with an abuthe corresponding sample ion abundance must must make the corresponding sample ion abundance must make the corresponding sample	um at a relative intensity greater than ree within ±20% between the standard indance of 50% in the standard spectr	10%
	lons present at greater than 10% in the sam standard spectrum, must be evaluated by interpretation.		um, the
List compound	standard spectrum, must be evaluated by		um, the
List compound Sample ID	standard spectrum, must be evaluated by interpretation.		um, the

Action:

- 1. The application of qualitative criteria for GC/MS analysis of target compounds requires professional judgment. It is up to the reviewer's discretion to obtain additional information from the laboratory. If it is determined that incorrect identifications were made, qualify all such data as unusable (R).
- Use professional judgment to qualify the data if it is determined that cross-contamination has occurred.
- Note in the Data Review Narrative any changes made to the reported compounds or concerns regarding target compound identifications. Note, for Contract Laboratory COR action, the necessity for numerous or significant changes.

TENTATIVELY IDENTIFIED COMPOUNDS (TICS)

NOTE: Tentatively identified compounds should only be evaluated when requested by a party from outside of the Hazardous Waste Support Section (HWSS).

List TICs

Sample ID	Compound	Sample iD	Compound
		=======================================	

Action:

- 1. Qualify all TIC results for which there is presumptive evidence of a match (e.g. greater than or equal to 85% match) as tentatively identified (NJ), with approximated concentrations. TICs labeled "unknown" are qualified as estimated (J).
- 2. General actions related to the review of TIC results are as follows:
 - a. If it is determined that a tentative identification of a non-target compound is unacceptable, change the tentative identification to "unknown" or another appropriate identification, and qualify the result as estimated (J).
 - b. If all contractually-required peaks were not library searched and quantitated, the Region's designated representative may request these data from the laboratory.
- In deciding whether a library search result for a TIC represents a reasonable identification, use professional judgment. If there is more than one possible match, report the result as "either compound X or compound Y". If there is a lack of isomer specificity, change the TIC result to a nonspecific isomer result (e.g., 1,3,5-trimethyl benzene to trimethyl benzene isomer) or to a compound class (e.g., 2-methyl, 3-ethyl benzene to a substituted aromatic compound).
- 4. The reviewer may elect to report all similar compounds as a total (e.g., all alkanes may be summarized and reported as total hydrocarbons).

- 5. Target compounds from other fractions and suspected laboratory contaminants should be marked as "non-reportable".
- 6. Other Case factors may influence TIC judgments. If a sample TIC match is poor, but other samples have a TIC with a valid library match, similar RRT, and the same ions, infer identification information from the other sample TIC results.
- 7. Note in the Data Review Narrative any changes made to the reported data or any concerns regarding TIC identifications.
- 8. Note, for Contract Laboratory COR action, failure to properly evaluate and report TICs

All criteria were met _X
Criteria were not met
and/or see below

SAMPLE QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

Action:

- 1. When a sample is analyzed at more than one dilution, the lower CRQL are used unless a QC exceedance dictates the use of higher CRQLs from the diluted sample. Samples reported with an "E" qualifier should be reported from the diluted sample.
- 2. If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.
- 3. For non-aqueous samples, if the solids is less than 10.0%, use professional judgment for both detects and non-detects. If the percent solid for a soil sample is greater than or equal to 10.0% and less than 30.0%, use professional judgment to qualify detects and non-detects. If the percent solid for a soil sample is greater than or equal to 30.0%, detects and non-detects should not be qualified (see Table 11).
- 4. Note, for Contract Laboratory COR action, numerous or significant failures to accurately quantify the target compounds or to properly evaluate and adjust CRQLs.
- 5. Results between MDL and CRQL should be qualified as estimated "J".
- 6. Results < MDL should be reported at the CRQL and qualified "U". MDLs themselves should not be reported.

Table 11. Percent Solids Actions for Semivolatile Analysis for Non-Aqueous Samples

Criteria	Action			
Criteria	Detects	Non-detects		
%Solids < 10.0%	Use professional judgment	Use professional judgment		
10.0% ≤ %Solids ≤ 30.0%	Use professional judgment	Use professional judgment		
%Solids > 30.0%	No qualification	No qualification		

SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION		
JC27467-5	10 x	1,4-dioxane outside calibration range		
JC27467-6	50 x	1,4-dioxane outside calibration range		
		Tailline .		
		- 12		
		The state of the s		

				Crite	riena were met _ ria were not met or see below	
FIELD DUPLICATE	PRECIS	SION				
Sample IDs	: <u> </u>			Ma	trix:	
analyses measure laboratory duplicate will have a greater field duplicate samp. The project QAPP s Suggested criteria:	both fiel s which variance les. hould be if large	d and lab precision only laboratory post than water matrice reviewed for project RPD (> 50 %) is	d analyzed as an indicent, therefore, the result on; therefore, the result of the resu	Its may expected associated assoc	have more I that soil died with colle I of the san	variability than uplicate results ecting identical
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION	
					_	
used to assess pr	ecision. mit but	RPD for hexacl within the require	of this data package. nlorobutadiene and h d guidance document	exachlor	oethane ou	itside the

All criteria were met _X_	
Criteria were not met	
and/or see below	

OTHER ISSUES

Action:

A.	System Perfor	mance	
List sa	amples qualified	based on the degradation of system	performance during simple analysis:
Samp	le ID	Comments	Actions
Action	:		
during	sample analys	ment to qualify the data if it is detentually es. Inform the Contract Laborator performance which significantly afferts.	mined that system performance has degraded ry Program COR any action as a result of ected the data.
B.	Overall Assess	ment of Data	
List sa	amples qualified l	pased on other issues:	
Samp	le ID ========	Comments	Actions
_No_c	other_issues_tha lecission_purpos	t_required_the_need_to_qualify_the esOther_discrepancies_are_show	e_dataResults_are_valid_and_can_be_used vn_below
Note:			

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data. Inform the Contract Laboratory COR the action, any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

- 3. Sometimes, due to dilutions, re-analysis or SIM/Scan runs are being performed, there will be multiple results for a single analyte from a single sample. The following criteria and professional judgment are used to determine which result should be reported:
 - The analysis with the lower CRQL
 - The analysis with the better QC results
 - The analysis with the higher results

EXECUTIVE NARRATIVE

SDG No:

JC27467

Laboratory:

Accutest, Florida

Analysis:

SW846-8015C

Number of Samples:

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Six (6) samples were analyzed for the low molecular weight alcohols (LMWAs) list following method SW846-8015C. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence: "Test Methods for Evaluating Solid Waste, Physical/Chemical Methods SW-846 (Final Update III, December 1996)," specifically for Methods 8000/8015C are utilized. The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Maior:

None

Minor:

None

Critical findings:

None None

Major findings: Minor findings:

- 1. All samples analyzed within the recommended method holding except the cases described in the Data Review Worksheet. No action taken samples originally analyzed within the holding time. All samples properly preserved.
- 2. Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns except for the cases described the Data Review Worksheet. Final calibration verification included in data packages.

Analytes not meeting the calibration performance criteria qualified (J) or (UJ) in affected samples.

Only one column used in the re-run of samples JC37467-1 to JC37467-6.

- 3. All surrogate recoveries within laboratory control limits except in the cases described in the Data Review Worksheet. Surrogate recoveries outside of in house control limits. No action taken, professional judgment. Surrogate recoveries high and no associated positive result detected.
- 4. Analytes outside control limits in the blank spike. No action taken; professional judgment. % recoveries were within generally acceptable control limits and no positive results found in sample batch.

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

October 8, 2016

Date:

SAMPLE ORGANIC DATA SAMPLE SUMMARY

v - - 1

Sample ID: JC27467-1

Sample location: BMSMC Building 5 Area

Sampling date: 9/8/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	נט	Yes /
n-Propyl Alcohol	100	ug/l	1.0	_	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC27467-2

Sample location: BMSMC Building 5 Area

Sampling date: 9/8/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	UJ	Yes /
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	~	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	υ	Yes

Sample ID: JC27467-3

Sample location: BMSMC Building 5 Area

Sampling date: 9/9/2016 Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	•	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Isopropyl Alcohol	100	ug/l	1.0	**	LU	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/i	1.0	-	U	Yes
Methanol	200	ue/l	1.0	_	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9/9/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	נט	Yes /
Isopropyl Alcohol	100	ug/l	1.0	-	LU .	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/i	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/i	1.0	-	U	Yes
Methanol	200	ug/i	1.0	-	U	Yes

Sample ID: JC27467-5

Sample location: BMSMC Building 5 Area

Sampling date: 9/9/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	UJ	Yes
Isopropyl Alcohol	100	ug/l	1.0	-	UJ	Yes /
n-Propyl Alcohol	100	ug/l	1.0	-	Ü	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

Sample ID: JC27467-6

Sample location: BMSMC Building 5 Area

Sampling date: 9/12/2016

Matrix: Groundwater

METHOD: 8015C

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Ethanol	200	ug/l	1.0	-	U	Yes
Isobutyl Alcohol	100	ug/l	1.0	-	UJ	Yes /
Isopropyl Alcohol	100	ug/l	1.0	-	UJ	Yes
n-Propyl Alcohol	100	ug/l	1.0	-	U	Yes
n-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
sec-Butyl Alcohol	100	ug/l	1.0	-	U	Yes
Methanol	200	ug/l	1.0	-	U	Yes

	Project Number:JC27467
	Date:09/08-12/2016
	Shipping Date:09/12/2016
	EPA Region: 2
REVIEW OF VOLATILE The following guidelines for evaluating volatile organics w document will assist the reviewer in using professional ju- serving the needs of the data users. The sample result	ere created to delineate required validation actions. This udgment to make more informed decision and in better ts were assessed according to USEPA data validation
guidance documents in the following order of prece Physical/Chemical Methods SW-846 (Final Update III, De- utilized. The QC criteria and data validation actions liste	cember 1996)," specifically for Methods 8000/8015C are
guidance document, unless otherwise noted.	data a salama anadarat tana ta ana artica
The hardcopied (laboratory name) _Accutestand the quality control and performance data summarized.	data package received has been reviewed
and the quality control and performance data summarized.	The modified data review for VOCs included:
Lab. Project/SDG No.:JC27467	Sample matrix: Groundwater
No. of Samples:6	Olouluwatel
10. of Gampios	_
Trip blank No.:	
Field blank No.:	
Equipment blank No.:	
Field duplicate No.:	
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
N/A_ GC/MS Tuning	X Calibrations
N/A_ Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X duritogate recoveriesX Matrix Spike/Matrix Spike Duplicate	Quantitation Latins
Overall Comments:_Low_molecular_weight_a	lcohols_by_SW-846_8015C
Definition of Qualifiers:	ϵ
J- Estimated results	
J- Compound not detected	
R- Rejected data	
JJ- Estimated nondetect	
Reviewer:	
Date: October 8, 2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTAC	CTED	DATE RECEIVED
			<u>_</u>
7	N.		
	\		
3	1		
		1	
A 37 A 37 A 38		100	
			*
			
		<u> </u>	

All criteria were met _X
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE ANALYZED	pН	ACTION
	action taken samples			the cases described in this holding time. All samples
JC27467-1	09/08/16	09/23/16	-	No action
JC27467-2	09/08/16	09//23/16	-	No action
				
				<u> </u>

Criteria

Aqueous samples – 14 days from sample collection for preserved samples (pH \leq 2, 4°C), no air bubbles. Aqueous samples – 7 days from sample collection for unpreserved samples, 4°C, no air bubbles. Soil samples- 7 days from sample collection. Cooler temperature (Criteria: 4 + 2 °C): 3.9°C

<u>Actions</u>

If the VOCs vial(s) have air bubbles, estimate positive results (J) and reject nondetects (R).

If the % solids of soil samples is 10-50%, estimates positive results (J) and nondetects (UJ)

If the % solid of soil samples is < 10%, estimate positive results (J) and reject nondetects (R).

If holding times are exceeded but < 14 days beyond criteria, estimate positive results (J) and nondetects (UJ).

If holding times are exceeded but < 28 days beyond criteria, estimate positive results (J) and reject nondetects (R).

If holding times are grossly exceeded (> 28 days beyond criteria), reject all results (R).

If samples were not iced or if the ice were melted (> 10°C), estimate positive results (J) and nondetects (UJ).

	All criteria were metN/A	
Criteria	were not met see below	

GC/MS TUNING

The assessment of the tuning results is to determine if the sample instrumentation is within the standard tuning QC limits
N/A_ The BFB performance results were reviewed and found to be within the specified criteria.
N/A BFB tuning was performed for every 12 hours of sample analysis.
f no, use professional judgment to determine whether the associated data should be accepted, qualified or rejected.
List the samples affected:

If mass calibration is in error, all associated data are rejected.

All criteria were met
Criteria were not met
and/or see belowX

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	_09/21/16
Dates of continuing calibration:	09/21/16;_09/23/16
Dates of final calibration verification:_	09/21/16;_09/23/16
Instrument ID number:	GCGH
Matrix/Level: Aqueou	is/low

DATE	LAB FILE ID#	CRITERIA OUT	COMPOUND	SAMPLES
		RFs, %RSD, <u>%D</u> , r		AFFECTED
09/21/16	CC5496-10000	-34.6/-37.7	Hexanol	JC27467-1 to -6
		-23.2/-22.7	2-propanol	
09/23/16	cc5496-10000	-27.4	2-propanol ⁴	JC27467-1 to -6
09/23/16	cc5496-5000	-22.0	2-propanol [^]	JC27467-1 to -6
		-30.1	Isobutanol ^A	

Note: Initial, continuing, and final calibration verifications meets method specific criteria in at least one of the two columns except for the cases described in this document. Final calibration verification included in data packages.

Analytes not meeting the calibration performance criteria qualified (J) or (UJ) in affected samples.

Criteria

All RFs must be > 0.05 regardless of method requirements for SPCC.

All %RSD must be < 15 % regardless of method requirements for CCC.

All %Ds must be < 20% regardless of method requirements for CCC.

It should be noted that Region 2 SOP HW-24 does not specify criterion for the curve correlation coefficient (r). A limit for r of \geq 0.995 has therefore been utilized as professional judgment.

^{^-} Only one column used.

Actions

If any compound has an initial RF or a continuing RF of < 0.05, estimate positive results (J) and reject nondetects (R), regardless of method requirements.

If any compound has a %RSD > 15%, estimate positive results (J) and use professional judgment to qualify nondetects.

If any compound has a %RSD > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and reject nondetects (R).

If any compound has a % D > 20%, estimate positive results (J) and nondetects (UJ).

If any compound has a % D > 90%, estimate positive results (J) and reject nondetects (R).

If any compound has r < 0.995, estimate positive results and nondetects.

A separate worksheet should be filled for each initial curve

All criteria were metX	
Criteria were not met	
and/or see below	

V A. BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contamination in the blanks below. High and low levels blanks must be treated separately.

Laboratory blanks

DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_No_field/trip/ed	quipment_blank	s_included_in_	this_data_package	

All criteria were metX
Criteria were not met
and/or see below

VB. BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

ALs = 10x the amount of common contaminants (methylene chloride, acetone, 2-butanone, and toluene) ALs = 5x for any other compounds

Specific actions are as follows:

If the concentration is < sample quantitation limit (SQL) and \le AL, report the compound as not detected (U) at the SQL.

If the concentration is \geq SQL but \leq AL, report the compound as not detected (U) at the reported concentration.

If the concentration is \geq SQL and > AL, report the concentration unqualified.

Notes:

High and low level blanks must be treated separately

Compounds qualified "U" for blank contamination are still considered "hits" when qualifying for calibration criteria.

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES
					40000
				7 11	- Paris
			- 10 P	1	
· · · · · · · · · · · · · · · · · · ·			-		
		-			
	- 12				
	455				
					-
and the same			_		
To the second			-		

All criteria were metX
Criteria were not met
and/or see below

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery. Matrix: solid/aqueous

SAMPLE ID	SURROGATE COMPOUND ACT			ACTION	
	Hexanol S1 a	DBFM	TOL-d8	BFB	
JC27467-1 JC27467-2 JC27467-2 JC27467-3 JC27467-3 JC27467-4 JC27467-4 JC27467-5 JC27467-5 JC27467-6 GGH5500-BS GGH5500-MB2 JC27795-1MS JC27795-1MSD GGH5500-MB1	103 151* b 98 163* b 85 170* b 105 175* b 101 177* b 105 174* b 94 107 77 81 108				
CCI 10000-MD I	100				

- (a) Recovery from GC signal #1
- (b) Outside of in house control limits. No associated positive result detected.

Note: All surrogate recoveries within laboratory control limits except in the cases described in this document. Surrogate recoveries outside of in house control limits. No action taken, professional judgment. Surrogate recoveries high and no associated positive result detected.

QC Limits* (Aqueous)				
LL_to_UL	_56_to_145_	to	to	to
QC Limits* (Solid-Low)				
LL_to_UL	to	to	to	to
QC Limits* (Solid-Med)		-		
LL_to_UL	to	to	to	to

1,2-DCA = 1,2-Dichloromethane-d4 DBFM = Dibromofluoromethane

TOL-d8 = Toluene-d8 BFB = Bromofluorobenzene

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 80 120 % for aqueous and 70 130 % for solid samples.

Actions:

QUALITY	%R < 10%	%R = 10% - LL	%R > UL
Positive results	j	J	J
Nondetects results	R	UJ	Accept

Surrogate action should be applied:

If one or more surrogate in the VOC fraction is out of specification, but has a recovery of > 10%. If any one surrogate in a fraction shows < 10 % recovery.

All criteria were met _X
Criteria were not mel
and/or see below

VII. A MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

1. MS/MSD Recoveries and Precision Criteria

The laboratory should use one MS and a duplicate analysis of an unspiked field sample if target analytes are expected in the sample. If target analytes are not expected, MS/MSD should be analyzed.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC	27795-1MS/-MSD			Matrix/Level:	Groundwater/low	
MS OR MSD	COMPOUND	% R	RPD	QC LIMITS	ACTION	
MS/MSD%_re	ecoveries_and_RPD_	within_lab	oratory_	control_limits		
			<u> </u>			
					- 1319995	-
					W 9 61 1	
	-					

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

^{*} QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.

^{*} If QC limits are not available, use limits of 70 – 130 %.

All criteria were met _X
Criteria were not met
and/or see below

MS/MSD criteria apply only to the unspiked sample, its dilutions, and the associated MS/MSD samples:

If the % R for the affected compounds were < LL (or 70 %), qualify positive results (J) and nondetects (UJ).

If the % R for the affected compounds were > UL (or 130 %), only qualify positive results (J). If 25 % or more of all MS/MSD %R were < LL (or 70 %) or if two or more MS/MSD %Rs were < 10%, qualify all positive results (J) and reject nondetects (R).

VII. B MATRIX SPIKE/MATRIX SPIKE DUPLICATE

MS/MSD - Unspiked Compounds

It should be noted that Region 2 SOP HW-24 does not specify a MS/MSD criteria for the unspiked compounds in the sample. A %RSD of < 50% has therefore been utilized as professional judgment.

If all target analytes were spiked in the MS/MSD, this review element is not applicable.

List the %RSD of the compounds which do not meet the criteria.

Sample ID:	<u> </u>		Matrix/Le	vel/Unit		
COMPOUND	SAMPLE CONC.	MS CONC.	MSD CONC.	% RSD	ACTION	
				10000	100000	
The state of the s					<u> </u>	

Actions:

A separate worksheet should be used for each MS/MSD pair.

^{*} If the % RSD > 50, qualify the positive result in the unspiked samples as estimated (J).

^{*} If the % RSD is not calculated (NC) due to nondetected value, use professional judgment to qualify the data.

All criteria were metX	
Criteria were not met	
and/or see below	

VIII. LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

Where LCS spiked with the same analyte at the same concentrations as the MS/MSD? Yes or No. If no make note in data review memo.

List the %R of compounds which do not meet the criteria

	LCS ID	COMPOUND	% R	QC LIMIT	
Recoveries	_within_laborato	ry_control_limits_except	_in_the_cases_describ	ed_in_this_docume	nt
	GGH5500-BS	lsopropyl_alcohol	131*_a	76121	
		n-butyl_alcohol	127*_a	_67116	
		sec-butyl_alcohoi	119*_a	74118	
		·	<u></u>		

⁽a) High percent recoveries and no associated positive found in the QC batch.

Note: No action taken; professional judgment. % recoveries within generally acceptable control limits and no positive results found in sample batch.

- * QC limits are laboratory in-house performance criteria, LL = lower limit, UL = upper limit.
- * If QC limits are not available, use limits of 70 130 %.

Actions:

QUALITY	%R < LL	%R > UL
Positive results	J	J
Nondetects results	R	Accept

All analytes in the associated sample results are qualified for the following criteria.

If 25 % of the LCS recoveries were < LL (or 70 %), qualify all positive results (j) and reject nondetects (R).

If two or more LCS were below 10 %, qualify all positive results as (J) and reject nondetects (R).

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? Yes or No.

If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

^{* =} Outside of Control Limits.

		All criteria were met Criteria were not met and/or see belowN/A
IX.	FIELD/LABORATORY DUPLICATE PRECISION	
	Sample IDs:	Matrix:

Field/laboratory duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples.

The project QAPP should be reviewed for project-specific information. Suggested criteria: RPD \pm 30% for aqueous samples, RPD \pm 50 % for solid samples. If both samples and duplicate are <5 SQL, the RPD criteria is doubled.

COMPOUND	SQL	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
		n. RPD within labora	th this data package. Mo story, generally acceptal ce criteria control limits.		

Actions:

Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.

If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:

If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).

If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.

If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.

If both sample and duplicate results are not detected, no action is needed.

All criteria were melN/A
Criteria were not met
and/or see below

X. INTERNAL STANDARD PERFORMANCE

The assessment of the internal standard (IS) parameter is used to assist the data reviewer in determining the condition of the analytical instrumentation.

List the internal standard area of samples which do not meet the criteria.

- * Area of +100% or -50% of the IS area in the associated calibration standard.
- * Retention time (RT) within 30 seconds of the IS area in the associated calibration standard.

DATE	SAMPLE ID	IS OUT	IS AREA	ACCEPTABLE RANGE	ACTION	
						10.
		1				
1500						

Actions:

1. IS actions should be applied to the compound quantitated with the out-of-control ISs

QUALITY	IS AREA < -25%	IS AREA = -25 % TO - 50%	IS AREA > + 100%
Positive results	J	J	J
Nondetected results	R	UJ	ACCEPT

If a IS retention time varies more than 30 seconds, the chromatographic profile for that sample must be examined to determine if any false positive or negative exists. For shifts of a large magnitude, the reviewer may consider partial or total rejection of the data for the sample fraction.

All criteria were met _	X_
Criteria were not met	
and/or see below	_

XII. SAMPLE QUANTITATION

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC27467-1MS

Ethanol

RF = 17.06

[] = (97798)/(17.06)

= 5,732 ppm OK

All criteria were met _X
Criteria were not met
and/or see below

XII. QUANTITATION LIMITS

A. Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION

В.	Percent Solids		
	List samples which have ≤ 50 % solids		
		- TOTAL	- A

Actions:

If the % solids of a soil sample is 10-50%, estimate positive results (J) and nondetects (UJ)

If the % solids of a soil sample is < 10%, estimate positive results (J) and reject nondetects (R) $\,$

EXECUTIVE NARRATIVE

SDG No:

JC27467

Laboratory:

Accutest, New Jersey

Analysis:

SW846-8081B

Number of Samples:

6

Location:

BMSMC, Building 5 Area

Humacao, PR

SUMMARY:

Six (6) samples were analyzed for selected pesticides following method SW846-8081B. The sample results were assessed according to USEPA data validation guidance documents in the following order of precedence *Hazardous Waste Support Section SOP No. HW-36A, Revision 0, June, 2015. SOM02.2. Pesticide Data Validation.* The QC criteria and data validation actions listed on the data review worksheets are from the primary guidance document, unless otherwise noted.

Results are valid and can be used for decision making purposes.

Critical issues:

None

Major:

None

Minor:

None

Critical findings:

None

Major findings:

None

Minor findings:

- 1. Surrogate recoveries within laboratory control limits in the two columns except in the cases described in the data review worksheet. No action taken; surrogates recoveries were low due matrix interference with the internal standard and target analytes not detected in affected samples.
- 2. MS/MSD sample analyzed with this data package. % recoveries and RPD within laboratory control limits except in the cases described in the Data Review Worksheet. Analytes outside the laboratory limits are qualified as estimated (J) or (UJ) in sample JC37467-3

COMMENTS:

Results are valid and can be used for decision making purposes.

Reviewers Name:

Rafael Infante

Chemist License 1888

Signature:

Date:

October 8, 2016

SAMPLE ORGANIC DATA SAMPLE SUMMARY

Sample ID: JC27467-1

Sample location: BMSMC Building 5 Area

Sampling date: 8-Sep-16

Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	_{ss} U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-ĐDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 8-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/i	1	•	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	Ü	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	2	U	Yes
Heptachlor	0.010	ug/l	1	1.0	U	Yes
Heptachlor epoxide	0.010	ug/l	1	12	U	Yes
Methoxychior	0.020	ug/l	1	-	U	Yes
Toxaphene	0.25	ug/l	1	12	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.050	ug/l	1	-	U	Yes
alpha-BHC	0.050	ug/l	1		UJ	Yes -
beta-BHC	0.050	ug/l	1	-	U	Yes
delta-BHC	0.050	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.050	ug/l	1	-	IJ	Yes /
alpha-Chlordane	0.050	ug/l	1	2.5	U	Yes
gamma-Chlordane	0.050	ug/l	1	- 2	U	Yes
Dieldrin	0.050	ug/l	1	10	U	Yes
4,4'-DDD	0.050	ug/l	1	2.	U	Yes
4,4'-DDE	0.050	ug/l	1	-	U	Yes
4,4'-DDT	0.050	ug/l	1		U	Yes
Endrin	0.050	ug/l	1	-	U	Yes
Endosulfan sulfate	0.050	ug/l	1		UJ	Yes /
Endrin aldehyde	0.050	ug/l	1	-	U	Yes
Endrin ketone	0.050	ug/l	1	12	υ	Yes
Endosulfan-l	0.050	ug/l	1	-	UJ	Yes /
Endosulfan-II	0.050	ug/l	1	- 1	U	Yes
Heptachlor	0.050	ug/l	1		U	Yes
Heptachlor epoxide	0.050	ug/i	1	12	U	Yes
Methoxychlor	0.10	ug/i	1	-	IJ	Yes /
Toxaphene	1.3	ug/l	1	2	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Sep-16 Matrix: Groundwater

11100.0002						
Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/l	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	ប	Yes
delta-BHC	0.010	ug/l	1	-	U	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/l	1	•	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	υ	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-i	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/l	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.020	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

Sample location: BMSMC Building 5 Area

Sampling date: 9-Sep-16 Matrix: Groundwater

Analyte Name	Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
Aldrin	0.010	ug/i	1	-	U	Yes
alpha-BHC	0.010	ug/l	1	-	U	Yes
beta-BHC	0.010	ug/l	1	-	U	Yes
delta-BHC	0.010	ug/l	1	-	บ	Yes
gamma-BHC (Lindane)	0.010	ug/l	1	-	U	Yes
alpha-Chlordane	0.010	ug/l	1	-	U	Yes
gamma-Chlordane	0.010	ug/l	1	-	U	Yes
Dieldrin	0.010	ug/l	1	-	U	Yes
4,4'-DDD	0.010	ug/i	1	-	U	Yes
4,4'-DDE	0.010	ug/l	1	-	U	Yes
4,4'-DDT	0.010	ug/l	1	-	U	Yes
Endrin	0.010	ug/l	1	-	U	Yes
Endosulfan sulfate	0.010	ug/l	1	-	U	Yes
Endrin aldehyde	0.010	ug/l	1	-	U	Yes
Endrin ketone	0.010	ug/l	1	-	U	Yes
Endosulfan-I	0.010	ug/l	1	-	U	Yes
Endosulfan-II	0.010	ug/i	1	-	U	Yes
Heptachlor	0.010	ug/l	1	-	U	Yes
Heptachlor epoxide	0.010	ug/l	1	-	U	Yes
Methoxychlor	0.021	ug/l	1	-	U	Yes
Toxaphene	0.26	ug/l	1	-	U	Yes

. . .

Sample location: BMSMC Building 5 Area

Sampling date: 12-Sep-16 Matrix: Groundwater

Result	Units	Dilution Factor	Lab Flag	Validation	Reportable
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.021	ug/l	1	-	-	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.010	ug/l	1	-	U	Yes
0.021	ug/l	1	-	U	Yes
0.26	ug/l	1	-	U	Yes
	0.010 0.010	0.010 ug/l	0.010 ug/l 1	0.010 ug/l 1 -	0.010 ug/l 1 - U

	Project/Case Number:JC27467
	Sampling Date:09/08-12/2016
	Shipping Date:09/12/2016
	EPA Region No.:2_
REVIEW OF PESTICIDE O	RGANIC PACKAGE
The following guidelines for evaluating volation required validation actions. This document will judgment to make more informed decision and users. The sample results were assessed accordocuments in the following order of precedence HW-36A, Revision 0, June, 2015. SOM02.2. Pestid data validation actions listed on the data reguidance document, unless otherwise noted.	assist the reviewer in using professional in better serving the needs of the data ding to USEPA data validation guidance Hazardous Waste Support Section SOP No. Side Data Validation. The OC criteria and
The hardcopied (laboratory name) _Accutest reviewed and the quality control and performance data sum	data package received has been marized. The data review for VOCs included:
Lab. Project/SDG No.:JC27467 No. of Samples:6	Sample matrix:Groundwater
Trip blank No.: Field blank No.:	
i iciu uupiicale 140	
Field spikes No.:	
de dedit dampido	
X Data Completeness	X Laboratory Control Spikes
X Holding Times	X Field Duplicates
N/A GC/MS Tuning	X Calibrations
X Internal Standard Performance	X Compound Identifications
X Blanks	X Compound Quantitation
X Surrogate Recoveries	X Quantitation Limits
X Matrix Spike/Matrix Spike Duplicate	
Overall Comments:TCL_pesticides_list_by_SW846-	8081B
Definition of Qualifiers:	
J- Estimated results	
U- Compound not detected	
R- Rejected data	
UJ- Estimated nondetect/	
Reviewer: (a) all all all	
Date:October_8,/2016	

DATA COMPLETENESS

MISSING INFORMATION	DATE LAB. CONTACTED	DATE RECEIVED
4		
	<u> </u>	
	<u> </u>	
		30 10 200 300
- II		
30%	1	
		70 3 500 5
	——————————————————————————————————————	
	1	
	_	
		<u> </u>
		<u> </u>
	W-1104	
		10

All criteria were metX
Criteria were not met
and/or see below

HOLDING TIMES

The objective of this parameter is to ascertain the validity of the results based on the holding time of the sample from time of collection to the time of analysis.

Complete table for all samples and note the analysis and/or preservation not within criteria

SAMPLE ID	DATE SAMPLED	DATE EXTRACTED/ANALYZED	ACTION
Samples properly pri	eserved.		
	<u></u>		

Preservatives:	_All_samples_extracted_and_analyzed_within_the_required_criteria	

Criteria

Aqueous samples - seven (7) days from sample collection for extraction; 40 days from sample collection for analysis.

Non-aqueous samples – fourteen (14) days from sample collection for extraction; 40 days from sample collection for analysis.

Cooler temperature (Criteria: 4 ± 2 °C): 3.9°C - OK

Actions

Qualify aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved ($T = 4^{\circ}C \pm 2^{\circ}C$), and the samples were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding times, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding times, qualify detects as estimated (J) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.

- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

Qualify non-aqueous sample results using preservation and technical holding time information as follows:

- a. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed within the technical holding time, qualify detects as estimated (J) and non-detects as estimated (UJ).
- b. If there is no evidence that the samples were properly preserved (T = 4° C \pm 2° C), and the samples were extracted or analyzed outside the technical holding time, qualify detects as estimated (UJ).
- c. If the samples were properly preserved, and were extracted and analyzed within the technical holding time, no qualification of the data is necessary.
- d. If the samples were properly preserved, and were extracted or analyzed outside the technical holding time, qualify detects as estimated (JJ) and non-detects as estimated (UJ). Note in the Data Review Narrative that holding times were exceeded and the effect of exceeding the holding time on the resulting data.
- e. Use professional judgment to qualify samples whose temperature upon receipt at the laboratory is either below 2 degrees centigrade or above 6 degrees centigrade.
- f. If technical holding times are grossly exceeded, use professional judgment to qualify the data.

	All criteria were metX
Criteria	were not met see below

GAS CHROMATOGRAPH WITH ELECTRON CAPTURE DETECTOR (GC/ECD) INSTRUMENT PERFORMANCE CHECK (SECTIONS 1 TO 5)

1. Resolution Check Mixture

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 60.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

2. Performance Evaluation Mixture (PEM) Resolution Criteria

Criteria

Is PEM analysis performed at the required frequency (at the end of each pesticide initial calibration sequence and every 12 hours)?

Yes? or No?

Action

a. If PEM is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

Criteria

Is PEM % Resolution < 90%?

Yes? or No?

Action

- a. a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

All criteria were met ___X__
Criteria were not met see below

3. PEM 4,4'-DDT Breakdown

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

4. PEM Endrin Breakdown

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- c. Qualify detects for Endrin ketone as tentatively identified (NJ)

All cr	iteria were me	etX
Criteria were	not met see !	below

5. Mid-point Individual Standard Mixture Resolution -

Criteria

Is the resolution between two adjacent peaks in the Resolution Check Mixture C greater than or equal to 80.0% for all analytes for the primary column and greater than or equal to 50.0% for the confirmation column?

Yes? or No?

Is the resolution between two adjacent peaks in the Resolution Check Mixture (A and B) greater than or equal to 90.0%?

Yes? or No?

Note: If resolution criteria are not met, the quantitative results may not be accurate due to inadequate resolution. Qualitative identifications may also be questionable if coelution exists.

Action

- a. Qualify detects for target compounds that were not adequately resolved as tentatively identified (NJ).
- b. Qualify non-detected compounds as unusable (R).

Criteria

Is mid-point individual standard mixture analysis performed at the required frequency (every 12 hours)?

Yes? or No?

Action

a. If the mid-point individual standard mixture analysis is not performed at the required frequency, qualify all associated sample and blank results as unusable (R).

All criteria were met _X
Criteria were not met
and/or see below

CALIBRATION VERIFICATION

Compliance requirements for satisfactory instrument calibration are established to ensure that the instrument is capable of producing and maintaining acceptable quantitative data.

Date of initial calibration:	09/08/16
Dates of initial calibration verification	on:09/08/16
Dates of continuing calibration:	09/16/16;_09/20/16;_09/21/16
Dates of final calibration(09/20/16;_09/21/16
Instrument ID numbers:	GC4G
Matrix/Level:	Aqueous/low

DATE	LAB ID#	FILE	CRITERIA OUT RFs, %RSD, %D, r	COMPOUND	SAMPLES AFFECTED
Initia Conti	nuing ca	libration	ration verification within % differences meet the s. Final calibration verifi	e performance criter	ment performance criteria. ia in at least one of the two
					35.

Criteria

Are a five point calibration curve delivered with concentration levels as shown in Table 3 of SOP HW-36A, Revision 0, June, 2015?

Yes? or No?

Actions

If the standard concentrations listed in Table 3 are not used, use professional judgment to evaluate the effect on the data

Criteria

Are RT Windows calculated correctly?

Yes? or No?

All criteria were met _X_	_
Criteria were not met	
and/or see below	

Action

Recalculate the windows and use the corrected values for all evaluations.

Criteria

Are the Percent Relative Standard Deviation (%RSD) of the CFs for each of the single component target compounds less than or equal to 20.0%, except for alpha-BHC and delta-BHC?

Yes? or No?

Are the %RSD of the CFs for alpha-BHC and delta-BHC less than or equal to 25.0%. Yes? or No?

Is the %RSD of the CFs for each of the Toxaphene peaks must be < 30% when 5-point ICAL is performed?

Yes? or No?

Is the %RSD of the CFs for the two surrogates (tetrachloro-m-xylene and decachlorobiphenyl) less than or equal to 30.0%.

Yes? or No?

Action

- a. If the %RSD criteria are not met, qualify detects as estimated (J) and use professional judgment to qualify non-detected target compounds.
- b. If the %RSD criteria are within allowable limits, no qualification of the data is necessary

Continuing Calibration Checks

Criteria

Is the continuing calibration standard analyzed at the acceptable time intervals? Yes? or No?

Action

- a. If more than 14 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of either a PEM or mid-point concentration of the Individual Standard Mixtures (A and B) or (C), qualify all data as unusable (R).
- b. If more than 12 hours has elapsed from the injection of the instrument blank that begins an analytical sequence (opening CCV) and the injection of the last sample or blank that is part of the same analytical sequence, qualify all data as unusable (R).
- c. If more than 72 hours has elapsed from the injection of the sample with a Toxaphene detection and the Toxaphene Calibration Verification Standard (CS3), qualify all data as unusable (R).

Criteria

Is the Percent Difference (%D) within ±25.0% for the PEM sample?

Yes? or No?

Action

a. Qualify associated detects as estimated (J) and non-detects as estimated (UJ).

Criteria

For the Calibration Verification Standard (CS3); is the Percent Difference (%D) within ± 25.0%? Yes? or No?

Action

Qualify associated detects as estimated (UJ) and non-detects as estimated (UJ).

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is detected?

Yes? or No?

Action

- a. Qualify detects for 4,4'-DDT; detects for 4,4'-DDD; and detects for 4,4'-DDE as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM 4,4'-DDT % Breakdown >20.0% and 4,4'-DDT is not detected

Yes? or No?

Action

- a. Qualify non-detects for 4,4'- DDT as unusable (R)
- b. Qualify detects for 4,4'-DDD as tentatively identified (NJ)
- c. Qualify detects for 4,4'-DDE as tentatively identified (NJ)

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is detected?

Yes? or No?

Action

- a. Qualify detects for Endrin; detects for Endrin aldehyde; and detects for Endrin ketone as estimated (J)
- b. Non-detected associated compounds are not qualified

Criteria

Is the PEM Endrin % Breakdown >20.0% and Endrin is not detected

Yes? or No?

Action

- a. Qualify non-detects for Endrin as unusable (R)
- b. Qualify detects for Endrin aldehyde as tentatively identified (NJ)
- Qualify detects for Endrin ketone as tentatively identified (NJ)

A separate worksheet should be filled for each initial curve

All criteria were met _X
Criteria were not met
and/or see below

BLANK ANALYSIS RESULTS (Sections 1 & 2)

The assessment of the blank analysis results is to determine the existence and magnitude of contamination problems. The criteria for evaluation of blanks apply only to blanks associated with the samples, including trip, equipment, and laboratory blanks. If problems with any blanks exist, all data associated with the case must be carefully evaluated to determine whether or not there is an inherent variability in the data for the case, or if the problem is an isolated occurrence not affecting other data.

List the contami	ination in the bl	anks below. Hig	h and low levels blanks	must be treated separately.
CRQL concentr	ationN	I/A		
Laboratory blan	ks			
DATE ANALYZED	LAB ID	LEVEL/ MATRIX	COMPOUND	CONCENTRATION UNITS
_ug/L	1990			nit_of_0.01,_0.02,_and_0.25
	-			
DATE Analyzed	LAB ID	LEVEL/ Matrix	COMPOUND	CONCENTRATION UNITS
_No_field/trip/ed	quipment_blank	s_analyzed_wit	th_this_data_package	
			1002	
		- Vis		<u> </u>

All criteria were met _X_	
Criteria were not mel	
and/or see below	

BLANK ANALYSIS RESULTS (Section 3)

Blank Actions

Action Levels (ALs) should be based upon the highest concentration of contaminant determined in any blank. Do not qualify any blank with another blank. The ALs for samples which have been diluted should be corrected for the sample dilution factor and/or % moisture, where applicable. No positive sample results should be reported unless the concentration of the compound in the samples exceeds the ALs:

The concentration of non-target compounds in all blanks must be less than or equal to 10 μ g/L. The concentration of each target compound found in the method or field blanks must be less than its CRQL listed in the method.

Data concerning the field blanks are not evaluated as part of the CCS process. If field blanks are present, the data reviewer should evaluate this data in a similar fashion as the method blanks.

Specific actions are as follows:

Blank Actions for Pesticide Analyses

Blank Type	Blank Result	Sample Result	Action for Samples
	Detects	Not detected	No qualification required
	< CRQL	< CRQL	Report CRQL value with a U
		≥ CRQL	No qualification required
Method, Sulfur		< CRQL	Report CRQL value with a U
Cleanup,		≥ CRQL and ≤ blank	Report blank value for
Instrument, Field, TCLP/SPLP	> CRQL	concentration sample cond	sample concentration with a
		≥ CRQL and > blank concentration	No qualification required
	= CRQL	≤CRQL	Report CRQL value with a U
		> CRQL	No qualification required
	Gross contamination	Detects	Report blank value for sample concentration with a U

All criteria were met _X
Criteria were not met
and/or see below

CONTAMINATION SOURCE/LEVEL	COMPOUND	CONC/UNITS	AL/UNITS	SQL	AFFECTED SAMPLES

All criteria were met _____ Criteria were not met and/or see below ___X__

SURROGATE SPIKE RECOVERIES

Laboratory performance of individual samples is established by evaluation of surrogate spike recoveries. All samples are spiked with surrogate compounds prior to sample analysis. The accuracy of the analysis is measured by the surrogate percent recovery. Since the effects of the sample matrix are frequently outside the control of the laboratory and may present relatively unique problems, the validation of data is frequently subjective and demands analytical experience and professional judgment.

List the percent recoveries (%Rs) which do not meet the criteria for surrogate recovery.

Matrix:_Aqueou	JS		_		
Lab Sample ID	Lab File ID	S1 a	S1 b	S2 a	S2 b
JC27467-1	4G72577.D	82	79	63	71
JC27467-2	4G72578.D	101	91	60	64
JC27467-3	4G72696.D	48	61	27	35
JC27467-3	4G72586.D	19* c	30	10	19
JC27467-4	4G72579.D	104	99	88	100
JC27467-5	4G72589.D	85	82	76	83
JC27467-6	4G72590.D	99	95	90	97
OP97015-BS1 OP97015-MB1	4G72566.D 4G72565.D	87 70	77 72	62	67
OP97015-MS	4G72587.D	78 31	72 36	63 27	70 33
OP97015-MSD		29	40	25	37
Surrogate Com	pounds		Recov	ery Limit	s
S1 = Tetrachloro-m-xylene S2 = Decachlorobiphenyl			26-132 10-118		
	om GC signal #1			***	(b) Recovery from GC signal #2

Note: Surrogate recoveries within laboratory control limits except in the cases described in this document. No action taken, surrogate recovery was low due to matrix interference with the internal standard and target analytes not detected in affected

samples.

Actions:

- a. For any surrogate recovery greater than 150%, qualify detected target compounds as biased high (J+).
- b. Do not qualify non-detected target compounds for surrogate recovery > 150 %.

(c) Outside the QC limits due matrix interference with the internal standard.

c. If both surrogate recoveries are greater than or equal to 30% and less than or equal to 150%, no qualification of the data is necessary.

- e. For any surrogate recovery greater than or equal to 10% and less than 30%, qualify non-detected target compounds as approximated (UJ).
- f. If low surrogate recoveries are from sample dilution, professional judgment should be used to determine if the resulting data should be qualified. If sample dilution is not a factor:
 - i. Qualify detected target compounds as biased low (J-).
 - ii. Qualify non-detected target compounds as unusable (R).
- g. If surrogate RTs in PEMs, Individual Standard Mixtures, samples, and blanks are outside of the RT Windows, the reviewer must use professional judgment to qualify data.
- h. If surrogate RTs are within RT windows, no qualification of the data is necessary.
- i. If the two surrogates were not added to all samples, MS/MSDs, standards, LCSs, and blanks, use professional judgment in qualifying data as missing surrogate analyte may not directly apply to target analytes.

Summary Surrogate Actions for Pesticide Analyses

	Action*				
Criteria	Detected Target Compounds	Non-detected Target Compounds			
%R > 150%	J+	No qualification			
30% < %R < 150%	No qua	alification			
10% < %R < 30%	J-	UJ			
%R < 10% (sample dilution not a factor)	J-	R			
%R < 10% (sample dilution is a factor)	Use professional judgment				
RT out of RT window	Use professional judgment				
RT within RT window	No qualification				

* Use professional judgment in qualifying data, as surrogate recovery problems may not directly apply to target analytes.

All criteria were met
Criteria were not met
and/or see belowX

MATRIX SPIKE/MATRIX SPIKE DUPLICATE (MS/MSD)

This data is generated to determine long term precision and accuracy in the analytical method for various matrices. This data alone cannot be used to evaluate the precision and accuracy of individual samples. If any % R in the MS or MSD falls outside the designated range, the reviewer should determine if there are matrix effects, i.e. LCS data are within the QC limits but MS/MSD data are outside QC limit.

MS/MSD Recoveries and Precision Criteria

Data for MS and MSDs will not be present unless requested by the Region.

Notify the Contract Laboratory Program Project Officer (CLP PO) if a field blank was used for the MS and MSD, unless designated as such by the Region.

NOTE: For a Matrix Spike that does not meet criteria, apply the action to only the field sample used to prepare the Matrix Spike sample. If it is clearly stated in the data validation materials that the samples were taken through incremental sampling or some other method guaranteeing the homogeneity of the sample group, then the entire sample group may be qualified.

List the %Rs, RPD of the compounds which do not meet the criteria.

Sample ID:JC27	7467-1MS/MSD	Matrix/Level:_	_Groundwater

The QC reported here applies to the following samples: Method: SW846 8081B JC27467-1, JC27467-2, JC27467-3, JC27467-4, JC27467-5, JC27467-6

	JC27467	7-3	Spike	MS	MS	Spike	MSD	MSD		Limits
Compound	ug/l	Q	ug/l	ug/i	%	ug/l	ug/l	%	RPD	Rec/RPD
alpha-BHC gamma-BHC Endosulfan sulfate Endosulfan-I Methoxychlor	ND b ND b ND b ND b ND b		0.5 0.5 0.5 0.5 0.5	0.19 0.21 0.24 0.24 0.24	38 42* c 48 48 48	0.5 0.5 0.5 0.5 0.5	0.18 0.19 0.22 0.21 0.21	36* c 38* c 44* c 42* c 42* c	5 10 9 13 13	37-164/37 44-160/37 46-161/36 43-154/35 48-169/32

⁽b) Result is from Run #2.

Note: MS/MSD sample analyzed with this data package. % recoveries and RPD within laboratory control limits except in the cases described in this document. Analytes outside the laboratory limits are qualified as estimated (J) or (UJ) in sample JC37467-3

⁽c) Outside the QC limits.

^{* =} Outside of Control Limits.

Action

No qualification of the data is necessary on MS and MSD data alone. However, using professional judgment, the validator may use the MS and MSD results in conjunction with other QC criteria and determine the need for some qualification of the data.

A separate worksheet should be used for each MS/MSD pair.

All criteria were metX	
Criteria were not met	
and/or see below	

LABORATORY CONTROL SAMPLE (LCS) ANALYSIS

This data is generated to determine accuracy of the analytical method for various matrices.

1. LCS Recoveries Criteria

LCS Spike Compound	Recovery Limits (%)
gamma-BHC	50 – 120
Heptachlor epoxide	50 – 150
Dieldrin	30 – 130
4,4'-DDE	50 – 150
Endrin	50 – 120
Endosulfan sulfate	50 – 120
trans-Chlordane	30 – 130
Tetrachloro-m-xylene (surrogate)	30 – 150
Decachlorobiphenyl (surrogate)	30 – 150

LC	S concentrations:	0.25_ug/l;		
List the %R	R of compounds w	hich do not meet the criteria	ì	
	LCS ID	COMPOUND	% R	QC LIMIT
				····
	<u>.</u>			
			<u> </u>	<u> </u>

Action

The following guidance is suggested for qualifying sample data for which the associated LCS does not meet the required criteria.

- a. If the LCS recovery exceeds the upper acceptance limit, qualify detected target compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the LCS recovery is less than the lower acceptance limit, qualify detected target compounds as estimated (J) and non-detects as unusable (R).
- c. Use professional judgment to qualify data for compounds other than those compounds that are included in the LCS.
- d. Use professional judgment to qualify non-LCS compounds. Take into account the compound class, compound recovery efficiency, analytical problems associated with each compound, and comparability in the performance of the LCS compound to the non-LCS compound.
- e. If the LCS recovery is within allowable limits, no qualification of the data is necessary.

2. Frequency Criteria:

Where LCS analyzed at the required frequency and for each matrix? <u>Yes</u> or No. If no, the data may be affected. Use professional judgment to determine the severity of the effect and qualify data accordingly. Discuss any actions below and list the samples affected.

Note: Blank spike analyzed for aqueous matrix. % recoveries within laboratory control limits. Recovery for gamma-chlordane obtained from second column, first column used for confirmation only.

All cntena were met	
Criteria were not met	
and/or see belowN/A	

FLORISIL CARTRIDGE PERFORMANCE CHECK

NOTE: Florisil cartridge cleanup is mandatory for all extracts.

Criteria

is the Florisil cartridge performance check conducted at least once on each lot of cartridges used for sample cleanup or every 6 months, whichever is most frequent?

Yes? or No?

N/A

Criteria

Are the results for the Florisil Cartridge Performance Check solution included with the data package?

Yes? or No?

N/A

Note: If % criteria are not met, examine the raw data for the presence of polar interferences and use professional judgment in qualifying the data as follows:

Action:

- a. If the Percent Recovery is greater than 120% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.
- b. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- c. If the Percent Recovery is greater than or equal to 10% and less than 80% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is less than 10% for any of the pesticide target compounds in the Florisil Cartridge Performance Check, qualify detected compounds as estimated (J) and qualify non-detected target compounds as unusable (R).
- e. If the Percent Recovery of 2,4,5-trichlorophenol in the Florisil Cartridge Performance Check is greater than or equal to 5%, use professional judgment to qualify detected and non-detected target compounds, considering interference on the sample chromatogram.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the Florisil Cartridge Performance Check analysis not yielding acceptable results.

Note: No information for florisil cartridge performance check included in data package. There is evidence tahtFlorisil cartridge was used for sample extraction/clean-up. No qualification of the data performed, professional judgment.

All criteria were met _	_N/A_	
Criteria were not met		
and/or see below		

GEL PERMEATION CHROMATOGRAPHY (GPC) PERFORMANCE CHECK

NOTE: GPC cleanup is mandatory for all soil samples.

If GPC criteria are not met, examine the raw data for the presence of high molecular weight contaminants; examine subsequent sample data for unusual peaks; and use professional judgment in qualifying the data. Notify the Contract Laboratory Program Project Officer (CLP PO) if the laboratory chooses to analyze samples under unacceptable GPC criteria.

Action:

- a. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, the non-detected target compounds may be suspect, qualify detected compounds as estimated (J).
- b. If the Percent Recovery is less than 10% for the pesticide compounds and surrogates during the GPC calibration check, qualify all non-detected target compounds as unusable (R).
- c. If the Percent Recovery is greater than or equal to 10% and is less than 80% for any of the pesticide target compounds in the GPC calibration, qualify detected target compounds as estimated (J) and non-detected target compounds as approximated (UJ).
- d. If the Percent Recovery is greater than or equal to 80% and less than or equal to 120% for all the pesticide target compounds, no qualification of the data is necessary.
- e. If high recoveries (i.e., greater than 120%) were obtained for the pesticides and surrogates during the GPC calibration check, qualify detected compounds as estimated (J). Do not qualify non-detected target compounds.

Note: State in the Data Review Narrative potential effects on the sample data resulting from the GPC cleanup analyses not yielding acceptable results.

Note: No information for performance of GPC cleanup included in data package. No qualification of the data performed, professional judgment.

All criteria were metX
Criteria were not met
and/or see below

TARGET COMPOUND IDENTIFICATION

Criteria:

- 1. Is Retention Times (RTs) of both of the surrogates and reported target compounds in each sample within the calculated RT Windows on both columns?

 Yes? or No?
- 2. Is the Tetrachloro-m-xylene (TCX) RT ± 0.05 minutes of the Mean RT (RT) determined from the initial calibration and Decachlorobiphenyl (DCB) within ± 0.10 minutes of the RT determined from the initial calibration? Yes? or No?
- 3. Is the Percent Difference (%D) for the detected mean concentrations of a pesticide target compound between the two Gas Chromatograph (GC) columns within the inclusive range of \pm 25.0 %?

 Yes? or No?
- 4. When no analytes are identified in a sample; are the chromatograms from the analyses of the sample extract and the low-point standard of the initial calibration associated with those analyses on the same scaling factor?

 Yes? or No?
- 5. Does the chromatograms display the Single Component Pesticides (SCPs) detected in the sample and the largest peak of any multi-component analyte detected in the sample at less than full scale.

 Yes? or No?
- 6. If an extract is diluted; does the chromatogram display SCPs peaks between 10-100% of full scale, and multi-component analytes between 25-100% of full scale?

 Yes? or No?

 N/A
- 7. For any sample; does the baseline of the chromatogram return to below 50% of full scale before the elution time of alpha-BHC, and also return to below 25% of full scale after the elution time of alpha-BHC and before the elution time of DCB?

 Yes? or No?
- 8. If a chromatogram is replotted electronically to meet these requirements; is the scaling factor used displayed on the chromatogram, and both the initial chromatogram and the replotted chromatogram submitted in the data package.

 Yes? or No?

Action:

- a. If the qualitative criteria for both columns were not met, all target compounds that are reported as detected should be considered non-detected.
- b. Use professional judgment to assign an appropriate quantitation limit using the following guidance:
 - If the detected target compound peak was sufficiently outside the pesticide RT Window, the reported values may be a false positive and should be replaced with the sample Contract Required Quantitation Limits (CRQL) value.

- ii. If the detected target compound peak poses an interference with potential detection of another target peak, the reported value should be considered and qualified as unusable (R).
- c. If the data reviewer identifies a peak in both GC column analyses that falls within the appropriate RT Windows, but was reported as a non-detect, the compound may be a false negative. Use professional judgment to decide if the compound should be included.

Note: State in the Data Review Narrative all conclusions made regarding target compound identification.

- d. If the Toxaphene peak RT windows determined from the calibration overlap with SCPs or chromatographic interferences, use professional judgment to qualify the data.
- e. If target compounds were detected on both GC columns, and the Percent Difference between the two results is greater than 25.0%, consider the potential for coelution and use professional judgment to decide whether a much larger concentration obtained on one column versus the other indicates the presence of an interfering compound. If an interfering compound is indicated, use professional judgment to determine how best to report, and if necessary, qualify the data according to these guidelines.
- f. If Toxaphene exhibits a marginal pattern-matching quality, use professional judgment to establish whether the differences are due to environmental "weathering" (i.e., degradation of the earlier eluting peaks relative to the later eluting peaks). If the presence of Toxaphene is strongly suggested, report results as presumptively present (N).

GAS CHROMATOGRAPH/MASS SPECTROMETER (GC/MS) CONFIRMATION

NOTE: This confirmation is not usually provided by the laboratory. In cases where it is provided, use professional judgment to determine if data qualified with "C" can be salvaged if it was previously qualified as unusable (R).

Action:

- a. If the quantitative criteria for both columns were met (\geq 5.0 ng/µL for SCPs and \geq 125 ng/µL for Toxaphene), determine whether GC/MS confirmation was performed. If it was performed, qualify the data using the following guidance:
 - i. If GC/MS confirmation was not required because the quantitative criteria for both columns was not met, but it was still performed, use professional judgment when evaluating the data to decide whether the detect should be qualified with "C".
 - ii. If GC/MS confirmation was performed, but unsuccessful for a target compound detected by GC/ECD analysis, qualify those detects as "X".

All criteria were met	_X
Criteria were not met	
and/or see below	

COMPOUND QUANTITATION AND REPORTED CONTRACT REQUIRED QUANTITATION LIMITS (CRQLS)

The sample quantitation evaluation is to verify laboratory quantitation results. In the space below, please show a minimum of one sample calculation:

JC27467-3MS

Endrin ketone (signal #2)

RF = 0.816

[] =

(140.3 x 10⁶)(50)/(661.2 X 10⁶)(0.816)

dag 0.61 =

Ok

Action:

- a. If sample quantitation is different from the reported value, qualify result as unusable (R).
- b. When a sample is analyzed at more than one dilution, the lowest CRQLs are used unless a QC exceedance dictates the use of the higher CRQLs from the diluted sample.
- c. Replace concentrations that exceed the calibration range in the original analysis by crossing out the "E" and its corresponding value on the original reporting form and substituting the data from the diluted sample.
- d. Results between the MDL and CRQL should be qualified as estimated (J).
- e. Results less than the MDL should be reported at the CRQL and qualified (U). MDLs themselves are not reported.
- f. For non-aqueous samples, if the percent moisture is less than 70.0%, no qualification of the data is necessary. If the percent moisture is greater than or equal to 70.0% and less than 90.0%, qualify detects as estimated (J) and non-detects as approximated (UJ). If the percent moisture is greater than or equal to 90.0%, qualify detects as estimated (J) and non-detects as unusable (R) (see Table).

Percent Moisture Actions for Pesticide Analysis for Non-Aqueous Samples

Criteria	Action		
	Detected Associated Non-detected Associated Compounds Compounds		
% Moisture < 70.0		lo qualification	
70.0 < % Moisture < 90.0	J	UJ	
% Moisture > 90.0	J	R	

List sam	ples which have	≤ 50 % solids			
			 	=	
•					

ote: If any discrepancies are found, the Region's designated representative may contact the laboratory to obtain additional information that could resolve any differences. If a discrepancy remains unresolved, the reviewer must use professional judgment to decide which value is the most accurate. Under these circumstances, the reviewer may determine that qualification of data is warranted. Note in the Data Review Narrative a description of the reasons for data qualification and the qualification that is applied to the data.

Dilution performed

SAMPLE ID	DILUTION FACTOR	REASON FOR DILUTION
	0.00	
-		
		10000

All criteria were metN/A
Criteria were not met
and/or see below

FIELD DUPLICATE PRECISION

NOTE: In the absence of QAPP guidance for validating data from field duplicates, the following action will be taken.

Field duplicates samples may be taken and analyzed as an indication of overall precision. These analyses measure both field and lab precision; therefore, the results may have more variability than laboratory duplicates which only laboratory performance. It is also expected that soil duplicate results will have a greater variance than water matrices due to difficulties associated with collecting identical field duplicate samples. Identify which samples within the data package are field duplicates. Estimate the relative percent difference (RPD) between the values for each compound. If large RPDs (> 50%) is observed, confirm identification of samples and note difference in the executive summary.

Sample IDs:			Matrix:		
COMPOUND	SQL ug/L	SAMPLE CONC.	DUPLICATE CONC.	RPD	ACTION
	n. RPD with	nin the required	this data package. MS criteria of < 50 % exce on taken based on RPI	ept in the ca	

Actions:

- a. Qualify as estimated positive results (J) and nondetects (UJ) for the compound that exceeded the above criteria. For organics, only the sample and duplicate will be qualified.
- b. If an RPD cannot be calculated because one or both of the sample results is not detected, the following actions apply:
 - i. If one sample result is not detected and the other is greater than 5x the SQL qualify (J/UJ).
 - ii. If one sample value is not detected and the other is greater than 5x the SQL and the SQLs for the sample and duplicate are significantly different, use professional judgment to determine if qualification is appropriate.
 - iii. If one sample value is not detected and the other is less than 5x, use professional judgment to determine if qualification is appropriate.
 - iv. If both sample and duplicate results are not detected, no action is needed.

OVERALL ASSESSMENT OF DATA

Action:

- 1. Use professional judgment to determine if there is any need to qualify data which were not qualified based on the Quality Control (QC) criteria previously discussed.
- 2. Write a brief narrative to give the user an indication of the analytical limitations of the data.

Note: The Contract Laboratory Program Project Officer (CLP PO) must be informed if any inconsistency of the data with the Sample Delivery Group (SDG) Narrative. If sufficient information on the intended use and required quality of the data is available, the reviewer should include their assessment of the usability of the data within the given context. This may be used as part of a formal Data Quality Assessment (DQA).

Overall assessment of the data: Results are valid; the data can be used for decision making purposes.